“IDENTIFICACIÓN DEL INMUNOFENOTIPO DE CÉLULAS EN TUMORES INDUCIDOS POR CÉLULAS MADRE DEL CÁNCER MAMARIO EN RATONES”

PARA OBTENER EL TITULO DE:
MEDICO VETERINARIO ZOOTECNISTA

PRESENTADO POR:
LUIS JHORDY ALFARO QUILLAS

CHINCHA, NOVIEMBRE 2017
“IDENTIFICACIÓN DEL INMUNOFENOTIPO DE CÉLULAS EN TUMORES INDUCIDOS POR CÉLULAS MADRE DEL CÁNCER MAMARIO EN RATONES”

Tesis para optar el título de Médico Veterinario y zootecnista

presentada por el Bachiller Luis Jhordy Alfaro Quillas

Asesor: Agustín Guerrero Canelo, MV
Asesor externo: Javier Enciso Gutiérrez, MV; MSc

2017
DEDICATORIA

A:

Dios, por darme la oportunidad de vivir y por estar conmigo en cada paso que doy, por fortalecer mi corazón e iluminar mi mente y por haber puesto en mi camino a aquellas personas que han sido mi soporte y compañía durante todo el periodo de estudio.

Mi madre Angela Quillas y a mi padre Edmundo Alfaro, por darme la vida, quererme mucho, creer en mí y porque siempre me apoyaste. Gracias por darme una carrera para mi futuro, todo esto te lo debo a ustedes.

Mis hermanos, Rosiluz, Jhimy y Orlando, por estar conmigo y apoyarme siempre, los quiero mucho.

Doctor Javier Enciso Gutiérrez y al Doctor Timothy M. Thomson por ser guía en esta epata de mi formación, en investigación ustedes me inspiran para seguir estudiando, gracias
AGRADECIMIENTOS

Trabajo de investigación financiado por el Programa Nacional de Innovación para la Competitividad y Productividad (Innovate Perú) de acuerdo al convenio No. 378-PNICP-PIBA-2014.
INDICE GENERAL

10. INDICE DE CUADROS

11. INDICE DE FIGURAS

12. INDICE DE ANEXOS

RESUMEN

SUMMARY

I. INTRODUCCIÓN

II. REVISION BIBLIOGRAFICA

2.1 Antecedentes

2.2 Marco teórico

2.2.1 Cáncer de mama

2.2.2 Fisiología de la glándula mamaria

2.2.3 El Cáncer

2.2.4 Causa del cáncer

2.2.5. Clasificación del cáncer de mama por el perfil de expresión génica

2.2.6 Características de los subtipos moleculares de cáncer de mama

2.2.6.2 HER2 – positivo

2.2.6.3. Triple – Negativo/Basal-like

2.2.6.4. Normal

2.2.6.5 Claudin – low

2.2.6.6 Células madres del cáncer

2.3 Objetivos generales

2.3.1 Hipótesis

2.3.2 Objetivos específicos

III. MATERIALES Y MÉTODOS

3.1 Lugar y fecha de ejecución

3.2. Infraestructura

3.3 Materiales

3.3.1 Materiales

3.3.2. Equipos

3.4 tipo de investigación

3.5. Métodos

3.5.2 Inmunoselección magnética

3.5.2.1 Inmunoselección de células CD44 positivas (CD44+ o CD44altas)

3.5.2.2 Inmunoselección de células CD24 positivas (CD24+ o CD24altas)

3.5.3. Ensayos de Proliferación (Doubling time [DT] en inglés)
3.5.4 Xenotransplante
3.5.4.1. Animales
3.5.4.2. Inmunosupresión
3.5.4.3. Células
3.5.4.4. Inoculación
3.5.4.5. Necropsia
3.5.4.6. Inmunohistoquímica
TRATAMIENTOS:
3.6. Variables en estudio
3.7. Diseño experimental
IV. Resultados
4.1. Inmunoselección magnética
4.2. Ensayos de proliferación celular
4.3. Xenotransplante
4.4. Inmunodetección de células xenotransplantadas
V. Discusión
VI. Conclusiones
VII. Recomendaciones
VIII. BIBLIOGRAFIA
IX. ANEXOS
10. INDICE DE CUADROS

Cuadro. 1 Grupos experimentales del inmun fenotipo células madre del cáncer según la línea celular... 45
Cuadro. 2 Inmunofenotipos obtenidos por selección magnética a partir de la línea MDA-MB-436 (ATCC).. 46
Cuadro. 3 Inmunofenotipos obtenidos por selección magnética a partir de la línea MDA-MB-231 (ATCC).. 47
Cuadro. 4 Doubling time del inmunofenotipo CD44alta/CD24baja de la línea celular MDA-MB-231. ... 48
Cuadro. 5 Doubling time del inmunofenotipo CD44alta/CD24 baja de la línea celular MDA-MB-436... 48
Cuadro. 6 Número de animales que presentaron tumores según líneas originarias del inmunofenotipo CD44alta/CD24baja y según vía de administración... 49
11. INDICE DE FIGURAS

Figura. 1 Representación esquemática de la interferencia reguladora potencial entre diferentes células mamarias ductales en respuesta estimulación de la hormona esteroide, (Visvader & Stingl, 2014).. 21
Figura. 2 Células basales y luminales de la glándula mamaria (Moriya et al., 2010).... 23
Figura. 3 Origen del cáncer de mama... 26
Figura. 4 Jerarquía del epitelio mamario ligado a los subtipos de cáncer de mama (Prat & Perou, 2009)... 27
Figura. 5 Procedimientos para inoculación de células en ratones del experimento..... 41
Figura. 6 Procedimiento para la apertura del animal durante la necropsia.............. 42
Figura. 7 Morfología al microscopio invertido de los diferentes inmunofenotipos obtenidos por inmunoselección magnética de la línea MDA-MB-436. 46
Figura. 8 Fotografías al microscopio invertido de los diferentes inmunofenotipos obtenidos Inmunoselección magnética de la línea MDA-MB-231. 47
Figura. 9 Diferencia de la proliferación celular de dos líneas celulares en función al tiempo de cultivo... 48
Figura. 10 Ratones inoculados con células del inmunofenotipo CD44alta/CD24baja de la línea MBA-MDB-231, mostrando desarrollo de tumores (Flechas) (A), comparado con el ratón inoculado con células de la línea MCF-7 (B). ... 50
Figura. 11 Corte histológico del tumor mamario (A).10X; e infiltrado de células neoplasicas en tejido adiposo subcutáneo de mama derecha (B). 10X. Tinción H/E... 50
Figura. 12 Formación de tumor submandibular, se describe tumor en ratones de 4 semanas post- inoculación SC. Células MDA-MB 231 CD44alta/CD24baja ratones en ratones multiparas, tinción H &E derecha 10X y 40X. ... 51
Figura. 13 Tumores (Flechas) pulmonares en ratones inoculados con células CD44alta/CD24baja de la línea MDA-MB-436. ... 52
Figura. 14 Inmunodetección de células humanas en tejido tumoral de ratón inoculado con células CD44alta/CD24baja. ... 53
Figura. 15 Inmunodetección de células humanas en pulmón de ratón inoculado con células CD44 alta/CD24 baja. ... 53
12. INDICE DE ANEXOS

Anexo 1. Líneas celulares que se emplearon en el proyecto...66
Anexo 2. Selección magnética...67
Anexo 3 Materiales para selección magnética...68
Anexo 4. Valores de hemograma...70
Anexo 5. Control de peso de grupos de experimentación.................................71
13. ABREVIATURAS

CD44= Antígeno de adhesión, glicoproteína transmembrana

CD24= Molécula de adhesión celular, glicoproteína

BALB/C= Ratón domestic para experimentación

CMC= Células madres del cáncer

TN= Triple negativo

HER2= Receptor 2 del factor de crecimiento epidérmico humana

HNA= Anticuerpo nuclear humano

ESA= Antígeno epitelial específico

UPA= Activador del plasminógeno de tipo uroquinasas

IL-1a= Interleucina 1 alfa

Wnt= Vía señalización Wnt

BRCA1 = Gen de la susceptibilidad al cáncer de mama 1 (Breast Cancer susceptibility gene 1)

BRCA2 = Gen de la susceptibilidad al cáncer de mama 2 (Breast Cancer susceptibility gene 2)

IARC= Agencia internacional para la investigación

IHQ= Inmunohistoquímica

CK= Citoqueratina

P63= Proteína tumoral relacionada con transformación

Erb-B2= Receptor 2 del factor de crecimiento epidérmico

NAT1= N- Acetiltransferasa
FOXA1 = Gen forkhead box 1

XBP1= Proteína de unión x-box 1

GATA 3 = Proteína para factor de transcripción

PTP4A2 = Proteína tirosina fosfatasa tipo IV A2

RERG= Gen inhibidor del crecimiento regulado por estrógeno

RE= Receptor de estrógeno

RP= Receptor de progesterona

TP 53 = Proteína supresor de tumor

Rb= Proteína del retinoblastoma, una proteína supresora de tumores

TEM= Transición epitelio mesénquima

VEGFC= Factor de crecimiento endotelial vascular

MMP9= Matrix metallopeptidasa 9

ALDH1= Aldehído deshidrogenasa 1

CSC= células madres del cáncer en ingles

NOD/SCID= Ratón no obeso diabético / inmunodeficiencia combinada severa

LC= Línea celular

PBS= Solución salina tamponada con fosfato

HRP- Streptavidin= Reactivo con peroxidasa de rábano conjugado con streptavidina

DT= Dobling time

DMSO= Dimetilsulfóxido

SFB= Suero fetal bovino
RESUMEN. El presente estudio tiene como objetivo, proporcionar evidencias que las células madres del cáncer mamario triple negativo con inmunofenotipo CD44 altas/CD24 bajas, de 2 líneas celulares de cáncer mamario triple negativo humano, juegan un papel importante en los procesos de proliferación, diferenciación y metástasis. Se trabajó con las líneas MDA-MB-231 y MDA-MB-436. De las cuales por separación inmunomagnética se obtuvo el fenotipo CD44altas/CD24 bajas, siendo expandidas hasta alcanzar poblaciones suficientes para ser inoculadas vía intravenosa y subcutánea en ratones BALB/C multiparas, previamente inmunosuprimidos con dexametasona por 15 días. Después de 4 semanas pos inoculación se realizó la eutanasia para su evaluación a la palpación y necropsia para detectar la formación de tumores y metástasis de células tumorales inoculadas. Mientras que por inmunohistoquímica usando un monoclonal anti-núcleo humano se determinó la presencia de las células trasplantadas. Los resultados muestran que por separación inmunomagnética se obtuvo 18.75% de células madre del cáncer en la línea MDA-MB-231 y 9.06% en la línea MDA-MB-436, inmunofenotipos que diferían en el doblaje de población, 41.56, horas Vs 44.79 horas respectivamente. El 16% de los animales inoculados con ambos inmunofenotipos formaron tumores a la palpación, y mediante IHQ se determinó que las células inoculadas estaban presentes en los tumores y en otros órganos de los animales xenotransplantados, 4 semanas después de la inoculación. Se concluye en que las líneas estudiadas tienen una subpoblación con inmunofenotipo compatible con las células madre del cáncer, las cuales difieren en la velocidad de proliferación, inducen formación de tumores en 16% y anidan en los tumores y otros órganos sanos del hospedero xenotrasplantado, por lo que se considera que es necesario realizar ensayos con períodos más extensos pos inoculación, aplicando dosis más altas, y utilizando esferoides.

Palabras clave
células madres del cáncer, cáncer de mama triple negativo, inmunofenotipo, inmunomagnética, xenotrasplante, IHQ inmunohistoquímica.
SUMMARY. The objective of this study is to provide evidence that triple-negative mammary cancer stem cells with \(\text{CD44}^{\text{high}}/\text{CD24}^{\text{low}} \) immunophenotypes of 2 human triple negative breast cancer cell lines play an important role in the proliferation, differentiation and metastasis processes. We worked with the lines MDA-MB-231 and MDA-MB-436. Of which, by immunomagnetic separation, the \(\text{CD44}^{\text{high}}/\text{CD24} \) phenotype was obtained, being expanded to reach sufficient populations to be inoculated intravenously and subcutaneously in multiparous BALB / C mice, previously immunosuppressed with dexamethasone for 15 days. After 4 weeks post inoculation, euthanasia was performed for evaluation at palpation and necropsy to detect the formation of tumors and metastasis of inoculated tumor cells. While by immunohistochemistry using a monoclonal anti-human nucleus the presence of the transplanted cells was determined. The results show that by immunomagnetic separation 18.75% of cancer stem cells were obtained in the line MDA-MB-231 and 9.06% in the line MDA-MB-436, immunophenotypes that differed in the double time, 41.56 Vs 44.79 hours, respectively. 16% of the animals inoculated with both immunophenotypes formed tumors upon palpation, and by IHC it was determined that the inoculated cells were present in the tumors and in other organs of the xenotransplanted animals, 4 weeks after the inoculation. It is concluded that the studied lines have a subpopulation with immunophenotype compatible with cancer stem cells, which differ in the proliferation speed, induce tumor formation in 16% and nest in tumors and other healthy organs of the xenotransplanted host, by what is considered that it is necessary to carry out tests with longer periods after inoculation, applying higher doses, and using spheroids.

Keywords

cancer stem cells, triple negative breast cancer, immunophenotyped, immunomagnetic, xenotransplante, IHQ immunohistochemistry.
I. INTRODUCCIÓN

La teoría estocástica del origen del cáncer plantea un modelo matemático, en el que la ley de probabilidad que da la evolución de un sistema, depende del tiempo: iniciación/ promoción/progresión. Entre los años 1960 – 1980 se demostró in vitro e in vivo que solo un pequeño porcentaje de células aisladas de un tumor eran clonogénicas, entonces se infería que dentro del tumor había variabilidad y habilidad de las células para proliferar. Mientras que otra teoría planteaba que el cáncer proviene de células embrionarias, las cuales son desplazadas durante el desarrollo y persisten en los tejidos adultos, fue propuesta en el siglo XVIII por Virchow, Conheim, Duranty Beard (a finales de 1800), la cual fue actualizada como teoría de las células madre del cáncer a finales del siglo XX y comienzos del actual.

Un tercer modelo de origen del cáncer, propone un modelo mixto de evolución clonal de las células madre del cáncer (CMC), para dar cuenta de la heterogeneidad del tumor. En este enunciado, las mutaciones transforman las células normales diferenciadas (teoría clonal), células madre o progenitoras para generar CMC, las cuales pueden acumular mutaciones adicionales (divergencia genética) dando lugar a diferentes clones de las mismas, las que luego sufren selección clonal. Para el caso del tumor mamario, los clones dominantes determinan el sub-tipo de cáncer mamario triple negativo (TNBC) (Fares et al., 2011).

Por otro lado, el cáncer mamario en mujeres es el segundo más importante en el Perú con tendencia a incrementar significativamente cada año, y dentro de este tipo de tumor, el sub-tipo triple negativo (TN) (HER2 y receptores hormonales negativos) que representa 15 – 20%, es además el que no tiene terapia exitosa alguna, por ser una enfermedad heterogénea; en este contexto, este tipo de cáncer es un buen modelo biológico para estudios básicos. En el presente trabajo nos proponemos identificar células con inmunofenotipo CD44+/CD24- tras la inoculación de células madres del cáncer mamario.
humano en ratones multiparas inmunosuprimidos, como un modelo para conocer mejor la carcinogénesis de este tipo de cáncer.

Se acepta que la separación inmunomagnética empleando el marcador CD44, que es un marcador para muchos tipos de células madre cancerosas (CSC), incluidas las CMC de mama, poseen mayor tumorigenicidad y potencial metastásico (Al-Hajj et al., 2003), colorrectal (Dalerba et al., 2007), pancreático (Li et al., 2007) y próstata (Patrawala et al., 2006; Collins et al., 2005) es un buen marcador de CMC; que además se expresa en líneas celulares de carcinoma, donde desempeña un papel en la migración de células cancerosas y la adhesión de la matriz en respuesta a un microambiente celular, mejorando así la agregación celular y el crecimiento celular tumoral (Aruffo et al., 1990); pero así mismo, CD44 se expresa también en células mesodérmicas, como las células hematopoyéticas, fibroblásticas y gliales.

La técnica inmunohistoquímica ha contribuido a mejorar el diagnóstico y pronóstico en los casos de neoplasias. El anticuerpo monoclonal anti-antígeno nuclear (HNA) (Millipore) detecta un antígeno nuclear específico del núcleo de células humanas y primates.

El tumor mamario triple negativo es el tipo tumoral más resistente a la terapia actual. Un mayor conocimiento del nicho de este tipo tumoral y de las poblaciones de células neoplásicas, así como del tejido estromal, contribuirá a un mejor conocimiento de este tumor, para a futuro, pretender ensayar nuevos planes terapéuticos y proporcionar más evidencias de las células madres del cáncer mamario triple negativo caracterizadas con inmunofenotipo CD44 altas y CD24 bajas que juegan un papel clave en los procesos de proliferación diferenciación y metástasis de cáncer de mama.

El objetivo de este estudio fue determinar si esta subpoblación de dos líneas celulares MDA-MB 231 y MDA-MB 436 seleccionada por el inmunofenotipo CD44 altas y CD24 bajas de células cancerosas de mama, tiene la capacidad de invadir y proliferar en probables sitios de metástasis en ratones con inmunosupresión química.
II. REVISION BIBLIOGRÁFICA

2.1 Antecedentes

Los modelos de ratón son herramientas muy útiles para comprender la biología del cáncer y han proporcionado información sobre el inicio, la progresión y la metástasis del tumor (Zhang et al., 2007).

En un estudio para identificar células madre del cáncer de páncreas en un modelo de xenoinjerto en ratones inmunosuprimidos, obtuvieron un cultivo primario de adenocarcinoma pancreático y en él identificaron una subpoblación altamente tumorigénica que expresaron marcadores de superficie CD44, CD24 y el antígeno epitelial específico (ESA en inglés). Demostraron que 100 células CD44+/CD24+/ESA+ formaban tumores en el 50% de los animales inyectados histológicamente indistinguibles de los tumores humanos de los que se originaron, en una proporción de 100 veces mayor que las células no tumorigénicas, además mostraron la propiedad de autorenovación, la capacidad de producir progenie diferenciada y una mayor expresión de la molécula de señalización denominada Sonic Hedgehog (Li et al., 2007), características que se encuentran en las células madre del cáncer (CMC).

En otro trabajo identificaron una subpoblación enriquecida para CMC ováricas definida por fenotipo CD24. Los experimentos in vitro demostraron que la subpoblación CD24alta poseía características parecidas a las células madre de quiescencia y más quimiorresistente en comparación con la fracción CD24baja, así como una capacidad específica de autorrenovación y diferenciación. Además, la inyección de 5×10^3 de células CD24alta, fue capaz de formar xenoinjertos de tumores en ratones desnudos, mientras que el mismo número de CD24baja células permaneció no tumorigénicas (Gao et al., 2010).

Mientras que usando un modelo de ratones inmunocomprometidos NOC/SCID, descubrieron que solo 100 células con fenotipo CD44alta/CD24baja produjeron tumor similar al que las dio origen en 8 de 9 animales. Sin embargo, observan
que esta subpoblación tumorigénica con dicho fenotipo, luego de pasajes generaban tumores con el mismo fenotipo y otros con poblaciones mixtas fenotípicamente, apareciendo células no tumorigénicas que estaban presentes en el tumor inicial (Al-Hajj et al., 2003).

Cuando se evaluó 13 líneas de células de cáncer de mama, cinco (MDA-MB-231, MDA-MB-436, Hs578T, SUM1315, y HBL-100) tenían un alto porcentaje (> 30%) del inmunofenotipo CD44alta/CD24baja con marcadores basal/mesenquimal o mioepiteliales más no luminales, así mismo, altos niveles de expresión de genes proinvasivos (IL-1a, IL-6, IL-8, y activador del plasminógeno uroquinasa [UPA]), y dentro de estas cinco líneas, la línea MDA-MB-231 es la única que tiene la propiedad de expresar una amplia gama de genes que favorecen la metástasis ósea y pulmonar (Sheridan et al., 2006).

2.2 Marco teórico

El crecimiento del epitelio mamario de roedores y humanos es regulado por el estrógeno secretado por los folículos del ovario, sumado a la hormona de crecimiento. Sin embargo, ambos factores también están relacionados con la hiperplasia epitelial y cáncer de la glándula mamaria. En el epitelio mamario del ratón alrededor de las yemas terminales, los receptores de estrógeno en ocasiones se co–expresan en la proliferación celular, sin embargo, la mayoría de las células en proliferación son negativas a los receptores de estrógeno y progesterona incluyendo la etapa de rápida división celular (Zeps et al., 1998; Zeps et al., 1999).

En el epitelio mamario humano y de la vaca prepuberal, los receptores para la hormona progesterona residen cerca de las células mitóticas en proliferación, pero rara vez en las propias células mitóticas(Clarke et al., 1997 y Clarke et al., 2000; Capuco et al., 2002), lo que demuestra que son mecanismos paracrinos por los cuales actúan estas hormonas en la decisión del destino celular en la glándula mamaria de ratones, para posteriormente, la señal ser traducida a través de la vía de señalización Wnt en el evento de la ramificación y alveogénesis de la glándula (Shyamala et al., 2000 y Brisken et al., 1998).
2.2.1 Cáncer de mama

El cáncer de mama es la causa de muerte más frecuentemente diagnosticada por cáncer en mujeres alrededor del mundo (Ferlay et al., 2012, Ferlay et al., 2014), la segunda causa en países desarrollados y la causa más importante de muerte en países de bajo y mediano desarrollo donde un alto porcentaje de mujeres se presentan con la enfermedad avanzada (Sankaranarayanan et al, 2010). Los factores de riesgo para el cáncer de mama incluyen la edad, historia familiar y personal de cáncer de mama o de lesiones pre-cancerosas, factores reproductivos, tratamiento hormonal, consumo de alcohol, obesidad para cáncer postmenopausa, exposición a radiación ionizante y predisposición genética (Colditz & Bohlke, 2014).

Por otro lado, el cáncer hereditario representa el 5 – 10% de todos los casos de cáncer de mama. Algunos de los genes mutados relacionados con este tipo de cáncer son más comunes en ciertos tipos étnicos. Los dos genes mutados mejor identificados son: BRCA1 y BRCA2, cuyas mutaciones confieren un riesgo aumentado de tener cáncer de mama y otros tumores en edades especialmente jóvenes. En pacientes jóvenes se han identificado 63 genes alterados, a través de los cuales se pueden estudiar las vías moleculares afectadas, siendo alteraciones específicas y distintas de los tumores de pacientes de mayor edad (Colak et al., 2013).

Al parecer que la edad también juega un rol importante en la patogenia del cáncer mamario humano, así, el 7% de los casos de cáncer de mama se diagnostican en mujeres antes de los 40 años (Sariego, 2010). Es el tumor que con mayor frecuencia aparece entre adolescente y adultos jóvenes entre 15 y 35 años de edad (Keegan et al., 2013). A partir de los 50 años el riesgo es más elevado, hasta 6,5 veces, siendo la mayor incidencia alrededor de los 60 años. Sin embargo, otros estudios muestran resultados contradictorios en cuanto al rol de la edad en la carcinogénesis de este tipo de cáncer de mama (Kroman et al., 2000). Pero existen evidencias que los tumores de los pacientes de menor edad tienen un perfil biológico diferente respecto a los tumores de pacientes de
mayor edad (Gabriel and Domchek, 2010). Generalmente los canceres a edades tempranas tienen características clínicas e histopatológicas más agresivas, suelen tener mayor tamaño y alto grado de malignidad y los pacientes tienen un mal pronóstico, con elevado porcentaje de recidivas local y menor supervivencia en comparación con tumores de pacientes mayores (Yildirim et al., 2000).

El cáncer de mama involucra tumores muy heterogéneos que tienen un amplio espectro de factores responsables de las variaciones en cuanto a respuesta terapéutica y al pronóstico (Brento et al., 2005). En el mundo aproximadamente 1 millón de casos de cáncer de mama son diagnosticados anualmente, de ellos más de 170,000 son triple negativo (Yadav et al., 2015). En Perú, un estudio reporta que en Arequipa el 30% del cáncer mamario es triple negativo (Mendoza-del Solar y Cervantes-Pacheco, 2014). El cáncer mamario triple negativo (TNBC) es una enfermedad heterogénea que comprende varios subtipos biológicamente distintos (Marmè & Schneeweiss, 2015).

A nivel molecular se reconocen dos grandes grupos: (1) receptores de estrógenos positivos que a su vez pueden ser luminal A y B (2) receptores de estrógenos negativo que a su vez comprenden los subtipos HER2 negativos, similar al basal y similar al tejido de mama normal, a los cuales se les denomina triples negativos debido a que no expresan receptores de estrógeno, de progesterona ni HER2, son de peor pronóstico, y presentan un mayor porcentaje de recurrencias locales y tempranas metástasis (Sorlie, 2004; Haffy et al., 2006). Una mejor comprensión de la heterogeneidad biológica de TNBC permitirá un enfoque más eficaz e individualizado del tratamiento (Hurvitz & Mead, 2016).

2.2.2 Fisiología de la glándula mamaria

En la pubertad (10-12 años) se inicia el funcionamiento del eje endocrino hipotáamo – hipófisis – ovárico, los folículos ováricos inician la secreción de estrógenos que, sumado a la hormona de crecimiento presente, determinan el crecimiento de los brotes epiteliales y la maduración de la glándula mamaria. Luego, al comenzar los ciclos ovulatorios, se inicia la producción cíclica de
progesterona que, sumándose a los estrógenos, determina un nuevo crecimiento de la glándula, con formación de los primeros alvéolos (Ceriani, 1974).

El ciclo menstrual se caracteriza por cambios cíclicos que reflejan las variaciones hormonales. El estrógeno estimula la proliferación del parénquima con la formación y ramificación de los conductos. La progesterona en la fase lútea favorece la dilatación de los conductos y la diferenciación de las células alveolares. Estos cambios no regresan con la menstruación, lo que permite a la mama continuar su desarrollo durante la edad adulta. Durante el embarazo, al elevarse los niveles de progesterona, prolactina y lactógeno placentario, los lobulillos se expanden en forma de racimos y la glándula mamaria se prepara para cumplir su función primordial, la secreción de leche. El período inicial del embarazo se caracteriza por una gran proliferación de los elementos epiteliales y del sistema de conductos, por una gran actividad mitótica y la formación de nuevos acinos (Neville., 2001).

El crecimiento de la mama continúa durante toda la gestación. Después de las 20 semanas, cesa la proliferación del epitelio alveolar y las células inician su actividad secretora (Valdés et al., 1994). La glándula mamaria es un parénquima glandular, compuesto de alvéolos y conductos y un estroma de soporte. Cada célula alveolar se comporta como una unidad de secreción, produciendo leche completa, sintetizando y transportando desde el plasma sanguíneo proteínas, grasas, hidratos de carbonos, sales, anticuerpos y agua. Los alvéolos están formados por una sola capa de células epiteliales cuboides o cilíndricas bajas, organizadas en acinos cada una de las cuales tiene la capacidad de producir leche completa. Las células mioepiteliales que rodean al alvéolo se alargan y adelgazan (Valdés et al., 1994).
Figura. 1 Representación esquemática de la interferencia reguladora potencial entre diferentes células mamarias ductales en respuesta estimulación de la hormona esteroide, (Visvader & Stingl, 2014).

2.2.3 El Cáncer

Es un grupo de enfermedades que pueden afectar a cualquier parte del organismo generalmente produciendo neoplasias malignas. Una característica del cáncer es la multiplicación rápida de células anormales que se extienden más allá de sus límites habituales y pueden invadir partes adyacentes del cuerpo o propagarse a otros órganos, proceso conocido como metástasis. Las metástasis son la principal causa de muerte por cáncer (Martel et al., 2012). El cáncer es la principal causa de muerte a nivel mundial, se le atribuyen 8,2 millones de defunciones ocurridas en todo el mundo en el año 2012 de los cuales 521,000 corresponden al cáncer mamario (Informe mundial sobre el cáncer 2014, IARC). En el mundo aproximadamente 1 millón de casos de cáncer de mama son diagnosticados anualmente, de ellos más de 170,000, (>17%) son triple negativo (Yadav et al., 2015). En Perú, un estudio reporta que en Arequipa el 30% del cáncer mamario es triple negativo (Mendoza et al., 2014) sin embargo en otras regiones es similar al promedio mundial.
2.2.4 Causa del cáncer

El cáncer en gran parte es el resultado de cambios genéticos y epigenéticos adquiridos lo que sustenta la teoría de la mutación somática (Armitage & Doll, 1957; Knudson, 1971) que se ha consolidado con el análisis amplio del genoma (Garraway L & Vogelstein B, 2013).

Pero, por otro lado, se sugiere que hay algunos factores estocásticos relacionados con la división de células madre que al parecer juegan un rol importante en el riesgo del cáncer. La idea que el número de células en un tejido y su acumulativo número de divisiones pueda estar relacionado al riesgo del cáncer, hace más vulnerable los factores carcinogénicos, pero por muchos años se consideraba muy controvėrsial (Albanes & Winick, 1988; Ward et al., 1993). Sin embargo, hoy se acepta que el cáncer de mama como cualquier cáncer se presenta por la confluencia de varios factores tanto intrínsecos (genéticos, hormonales) como extrínsecos (medioambientales), considerando que solo un tercio de la variación en el riesgo de cáncer entre los tejidos es atribuible a factores ambientales o predisposiciones hereditarias, la mayor parte se debe a la “mala suerte”, es decir, a las mutaciones al azar que surgen durante la replicación del ADN en células madre normales no cancerosas (Tomasetti & Vogelstein, 2015).

Existe extrema variación en la incidencia del cáncer a través de diferentes tejidos, por ej., el riesgo tiempo de vida en que se diagnostica el cáncer es de 6.9% para el pulmón, 1.08% para el tiroides, 0.6% para el cerebro y el resto del sistema nervioso, 0.003% para el hueso pélvico, 0.00072 % para el cartílago laríngeo (Dubai et al., 2014; Howlader et al., 2016). Por otro lado, la variación genética heredable es un contribuyente bien estudiado, sin embargo, solo entre 5-10% tienen componente heredable (Fearon, 1997; American Cancer Society).

2.2.5. Clasificación del cáncer de mama por el perfil de expresión génica

El cáncer de mama es una neoplasia heterogénea por lo que se refleja en la diferente respuesta a los tratamientos y evolución de los pacientes (Perou et al., 2000). Los principales son: ductal, lobular, mucinoso, inflamatorio y tumor.
mixto. La heterogeneidad celular y molecular es debido a la expresión de numerosos genes implicados principalmente en el control del crecimiento, muerte y diferenciación celular.

En la glándula mamaria normal se encuentran principalmente dos tipos de células epiteliales: células basales (miopiteliales) y células luminales (Figura 2), que se pueden distinguir por inmunohistoquímica (IHQ) según el patrón de expresión de ciertas proteínas: las células luminales expresan las citoqueratinas (CK) luminales CK8, 18 y CK19, Caderina-E, mientras que las células basales también expresan CKs luminales (CK14 y CK17) además de CK basales (CK5 y 6), caderina-P y marcadores mesenquimales “p63”, actina y vimentina (Moriya, et al., 2010).

Figura. 2 Células basales y luminales de la glándula mamaria (Moriya et al., 2010)

Por otro lado, estudios de expresión génica empleando microarrays definieron cuatro grupos de cáncer de mama con distintas características moleculares: (1) Luminal/RE (receptores de estrógenos) positivos (luminal – like), (2) Triple – negativo (TN)/Basal (basal – like), (3) Erb – B2 (Human Epidermal Growth Factor Receptor 2 – HER2), (4) Normal (normal – like). Recientemente se ha descrito un nuevo subtipo molecular similar al subtipo TN/Basal denominado claudin low, debido a la baja expresión de las proteínas claudina 3, 4 y 7, y de
la proteína E – caderina, que constituyen uniones estrechas intercelulares (Prat et al, 2010). Esta clasificación molecular tiene relevancia por su implicación clínica, ya que ha permitido clasificar a las pacientes en diferentes grupos pronósticos (Perou et al., 2000). Las diferencias en los patrones de expresión entre los subtipos moleculares reflejan que hay una clara diferencia en la biología celular de cada tumor. Desde este punto de vista, podría considerarse cada subtipo como el origen de una enfermedad distinta, lo que vendría apoyado por su diferente comportamiento clínico en cuanto a las recidivas y la supervivencia global de las pacientes (Prat et al., 2010). En el caso de los subtipos TN/Basal y HER2 – positivo, tienen un comportamiento clínico más agresivo, con períodos de recidiva y supervivencia más cortos. Por el contrario, el subtipo Luminal es de mejor pronóstico. El subtipo Luminal se divide dos categorías: Luminal A y Luminal B. El subtipo luminal B, presenta un pronóstico intermedio entre el Luminal A y los subtipos TN/Basal y HER2. El subtipo claudin – low, en términos pronósticos, los pacientes presentan una supervivencia menor que en el subtipo Luminal pero similar a los subtipos TN/Basal y HER2-positivo (Sorlie et al., 2003).

2.2.6 Características de los subtipos moleculares de cáncer de mama
2.2.6.1 Luminal

Presenta una alta expresión de genes característicos de las células luminales no neoplásicas, de receptores de estrógenos (RE) y de progesterona (RP). El subtipo Luminal A es el que presenta mayor nivel de expresión del RE/RP, sobretodo del RE – alpha (α) y de los genes NAT1, LIV-1, FOXA1, XBP1, GATA3, PTP4A2, RERG y SCUBE2, mientras que el subtipo Luminal B presenta una expresión moderada de genes específicos de células luminales y de genes asociados a proliferación celular como ATP5G1, PRNPIP, NSEP1, GGH, LAPTM4B, CCNE1 y SQLE (Sorlie et al., 2003).

2.2.6.2 HER2 – positivo

El receptor HER2/neu se encuentra sobreexpresado en un 15 – 20% de los cánceres de mama, muy frecuentemente asociado a la amplificación
del gen Erb – B2, localizado en el cromosoma 17 “17q22.24” (Pauletti et al., 1996), siendo ésta una de sus principales características. Además, estos tumores frecuentemente sobre expresan los genes TLK1, TRAP100, PPARBP y GRB7 y presentan mutaciones en el gen TP53 (Sorlie et al., 2001), lo que conlleva a un mal pronóstico para las pacientes (Berns et al., 2000).

2.2.6.3. Triple – Negativo/Basal-like

Característicamente son negativos para RE, RP y HER2. El subtipo Basal – like además de ser RE/RP/HER2 – negativo, suele sobre-expresar los genes CXCL1, CX3CL1, CDH3, ANXA8, KRT5, KRT17, TRIM29, MFGE8, FZD7, CHI3L2 y B3GNT5. Presentan frecuentemente mutaciones en el gen TP53 (Sorlie et al., 2001), lo que conlleva una mala respuesta a la quimioterapia sistémica y, por tanto, se asocia a un mal pronóstico (Berns et al., 2000). Un subgrupo de estos tumores tiene mutaciones en el gen BRCA1/BRCA2, los cuales tienen hallazgos histológicos característicos y se presentan en pacientes jóvenes, habitualmente en el contexto de síndromes hereditarios asociados a otros tumores (Grushko et al., 2002).

2.2.6.4. Normal

El subtipo normal tiene una alta expresión de genes presentes en tejido adiposo y en otros tejidos no epiteliales. Por otro lado, este tipo de tumores sobre expresan genes de células basales epiteliales y tienen baja expresión de genes presentes en células luminales (Sorlie et al., 2001), Posteriormente se definieron como tumores de baja densidad celular ricos en estroma. Sin embargo, resultados recientes no reproducen los datos inicialmente publicados por el grupo de Perou, por lo que actualmente se sugiere que pudo haber una contaminación de células de la mama normal (Guedj et al., 2012).
2.2.6.5 Claudin – low

Este subtipo molecular se caracteriza, a diferencia de los subtipos luminales y HER2 – positivo, por presentar una baja expresión de RE, RP y HER2, CKs18 y 19, así como de otros genes característicos de las células luminales. A pesar de su similitud con el subtipo TN/Basal, no suele sobre-expresar genes asociados a proliferación celular. De hecho, presentan una baja expresión del gen de ciclo celular MKI67. Sin embargo, tiene un alto enriquecimiento de marcadores de la transición epitelio – mesénquima (TEM), alta expresión de genes de la respuesta inmune (CD79B, CD14, VAV1) y la inducción de angiogénesis (VEGFC, MMP9) (Sorlie et al., 2003) y presentan propiedades de “células madre” (Prat et al., 2010). Todo esto se ha asociado a una mayor resistencia a los tratamientos quimioterápicos en estudios recientes (Li X et al., 2008).

Figura 3. Origen del cáncer de mama
2.2.6.6 Células madres del cáncer

Los tumores son masas celulares con un crecimiento descontrolado que causan la invasión y destrucción de órganos y tejidos, y, si no se detienen causan la muerte del individuo. Por otro lado, la masa celular del tumor sólido es heterogénea, entre los tipos celulares que podemos encontrar dentro de un tumor existe un reducido grupo de células que son responsables de poder trasplantar este tumor en un ratón inmunodeprimido (ratón desnudo, nude mice) y formar un nuevo tumor con las mismas características que el tumor original, como ha sido demostrado contundentemente (Cariati y Purushotham, 2008), estas células que probablemente, además son capaces de crear metástasis en otras zonas del cuerpo se denominan CMC.

Las CMC entonces, son un sub-tipo (subset) de células cancerosas las cuales juegan un rol clave en predecir la agresividad biológica del cáncer debido a su habilidad de autorenovación y diferenciación multilinaje. Este modelo es dinámico con una sub-población de células del cáncer antes que una población estable de células responsable de la regeneración del tumor. Esta hipótesis del origen de las CMC incluye: (1) transformación maligna de células madre normales, (2) des-
La diferenciación de células del cáncer maduras con transición epitelial-mesenquimal y (3) células del cáncer pluripotentes inducidas. Los rasgos característicos de las CMC incluyen su heterogeneidad, la interacción con el microambiente y la plasticidad (Islam et al, 2015). Esta teoría de las células madre del cáncer (CSC en inglés) fue establecida originalmente para neoplasias hematopoyéticas (Sakakibara et al, 2012) pero debido al rápido desarrollo en técnicas biomoleculares varios nuevos marcadores del cáncer mamario de la superficie celular asociados al linaje de CMC han sido descubiertos, tal como la ALDH1 asociada a subtipos biológicamente agresivos (Morimoto et al., 2009) presencia de CD44 combinado con ausencia de CD24 (Ky Ung-Mln et al., 2007). Sin embargo la expresión de marcadores de las poblaciones de CSC varía entre diferentes subtipos de cáncer mamario y con diferentes características clínico patológicas, así, cada población de CSC puede tener distinta importancia clínica en diferentes fenotipos de cáncer mamario (Tsang et al., 2012). Si estas células son las responsables de inducir o de mantener el cáncer, su estudio nos permitirá no solamente conocer mejor las bases celulares y moleculares del cáncer, sino la posibilidad de abordar de una manera completa su tratamiento.

Las CMC poseen la capacidad de auto-renovación y división asimétrica - producen una célula madre y otra progenitora del tumor- generando linajes heterogéneos de células cancerosas por lo que las CMC pueden jugar un papel importante en la iniciación, mantenimiento y diseminación del cáncer (Velasco et al., 2011). En humanos, el primer tumor sólido a partir del cual se identificaron y aislaron CSC fue el cáncer de mama en el cual se describieron una población de células CD44 + / CD24- y falta de expresión de CD2, CD3, CD10 , CD16, CD18, CD31, CD64, y CD140b que estaba significativamente enriquecido durante la iniciación del tumor. Doscientos de estas células fueron capaces de formar tumores después de xenotransplante en ratones NOD / SCID, mientras que decenas de miles de otras células no reprodujeron el tumor; los tumores así generados recapitularon la heterogeneidad fenotípica del...
tumor parental, que contiene una minoría de CD44⁺ / CD24⁻ (Ali-Hajj et al., 2003).

Por otro lado, estas células han demostrado ser más resistentes a tratamientos convencionales utilizados en oncología, como la quimioterapia o la radioterapia; por tanto, suponen un candidato claro para la generación de recidivas. La caracterización molecular de estas células se ha convertido en uno de los campos más activos en la investigación oncológica, ya que los tratamientos dirigidos contra estas células podrían dar lugar a una eliminación completa del tumor y, por lo tanto, a la posible curación de la enfermedad (Arrate et al., 2012).

Desde el punto de vista de la biología del cáncer han realizado la comparación de diferentes subpoblaciones de células con propiedades de células madre, que apoya la idea de que la CSC eran predominantemente CD49f⁺, y proponer el uso de CD4⁻ alta / CD24⁻ baja en combinación con Ep-CAM / CD49f como biomarcadores (Ghebeh et al., 2013.).

La existencia de CSC no implica que estas células se deriven necesariamente de las células madre de tejidos normales. Por el contrario, la definición de CSC o “células iniciadoras del tumor”, se basa en tres características funcionales de estas células: (a) auto-renovación medida por la capacidad de formar tumores en ratones inmunodeficientes, (b) capacidad de diferenciarse en células que no se autorenuevan y constituyen la mayor parte del tumor, (c) capacidad de iniciar tumores en ratones singénicos o inmunodeprimidos. Prueba formal de que un tumor sigue el paradigma CMC se basa en la capacidad de aislar de forma prospectiva fracciones de células con estas propiedades, así como fracciones sin estas propiedades (Dick, 2008).

Las células madre pueden presentar múltiples destinos: división (autorenovación), diferenciación, inactividad o muerte (Dick, 2008). Mediante su capacidad de auto renovación el destino de células iniciadoras del tumor es segregada de forma simétrica o asimétrica a las células hijas, que pueden ser funcionalmente definidas mediante el trasplante secundario (Dick, 2003; McKenzie et al., 2006). La heterogeneidad celular se mide típicamente usando la expresión
estructural diferencial de proteínas marcadores de diferenciación (es decir CD44, CD24, CD34, CD38, etc.) y se genera en modelos de xenoinjerto en el trasplante de serie.

El desarrollo de estos ensayos de trasplante in vivo ha facilitado el posible aislamiento de células madre y progenitoras de mama de ratón y humano sobre la base de varios marcadores de la superficie celular. Los marcadores de las células madre de mama son CD44alta/CD24baja, aldehído deshидrogenasa+, habiéndose demostrado que 200 CMC con fenotipo CD44alta/CD24baja fueron capaces de iniciar tumores (Al-Hajj et al., 2003).

Los modelos de ratón de la tumorigénesis mamaria se han utilizado ampliamente para investigar los mecanismos genéticos que conducen a la tumorigénesis mamaria (Hennighausen et al., 1999). La delimitación de los tipos de células en el tejido mamario que están predispuestos a la tumorigénesis requiere una comprensión detallada de la jerarquía celular. En las células madre de glándula mamaria de ratón normales se ha identificado un fenotipo CD29high/CD49fhigh/CD24mod/+ (Shackleton et al., 2006) para regenerar una glándula mamaria funcional completa.
2.3 Objetivos generales

Proporcionar evidencias que las células madre del cáncer de mama triple negativo con inmunofenotipo CD44 altas/CD24 bajas juegan un papel importante en los procesos de proliferación, diferenciación y metástasis.

2.3.1 Hipótesis

A- Las subpoblaciones CD 44 altas/CD24 bajas de líneas celulares de cáncer de mama MDA-MB 231, MDA-MB 436 inoculadas se comportan de manera similar en ensayos de xenotransplante en ratones.

B- El inmunofenotipo CD 44 altas/CD24 bajas de líneas celulares de cáncer de mama xenotransplantadas serán identificadas en los tumores inducidos.

2.3.2 Objetivos específicos

- Identificar subtipos de líneas celulares de cáncer mama MDA-MB 231, MDA-MB 436 por inmunoselección magnética

- Determinar el tiempo de doblaje de población de líneas celulares MDA-MB 231, MDA-MB 436 con inmunofenotipo CD 44 altas/CD 24 bajas.

- Determinar si las subpoblaciones de dos líneas celulares de cáncer de mama triple negativo MDA-MB 231, MDA-MB 436, con inmunofenotipo CD 44 altas/CD 24 bajas, tienen la capacidad de implantarse e inducir tumores ratones hembras con inmunosupresión química.
III. MATERIALES Y MÉTODOS

3.1 Lugar y fecha de ejecución

En trabajo de investigación se llevó a cabo en el Laboratorio de Cultivo Celular y Bioterio de la Universidad Científica del Sur, ubicada en el Km. 18.5 de la Panamericana Sur, distrito de Villa Salvador, Provincia y departamento de Lima.

3.2. Infraestructura

- Laboratorio de Cultivo Celular de la Universidad Científica del Sur.
- Sala blanca del Laboratorio de Cultivo Celular de la Universidad Científica del Sur.
- Bioterio de la Universidad Científica del Sur.

3.3 Materiales

3.3.1 Materiales

- Líneas celulares de cáncer de mama triple negativo MDA-MB-436 comprada de ATCC, USA; MDA-MB-231 (ATCC, USA) y MCF-7 (ATCC USA) cedidas por el Dr. Timothy Thomson del Laboratorio de Biología Molecular, del CSIC, Barcelona, España.
- Ratones multiparas mayores de tres partos, comprados del Instituto Nacional de Salud, Lima, Perú.
- Viruta, alimento balanceado, extractor de húmeda, termómetro, equipo de ambiente controlado (UNALM, Lima, Perú).
- Anticuerpos monoclonales anti CD44 y anti CD24 marcados con perlas magnéticas (Miltenyi,USA).
- Kit inmunohistoquímica. Se utilizó el kit de inmunohistoquímica INVITROGEN (USA) que utiliza como cromógeno el DAB.
- Anticuerpo monoclonal anti núcleo humano (Millipore, Merck).
- Suero Fetal Bovino (SFB), tripsina, DMEM-F 12 comprado de Sigma, USA. Glucosa (Sigma), antibióticos (penicilina+estreptomicina+ anfotericina B) (Millipore-Merck), L- glutamina (Biotechnology Industries, Israel), así como DMSO, bicarbonato y dexametasona comprados de Sigma, USA.
- Jeringas tuberculinas 27G. 30 G.x1/2
- Crioviales
- Tubos para centrifuga 50 ml y 15 ml (Corning)
- Lancetas para extracción de sangre para ratones
- Alcohol 70% y 96%
- Materiales para IHQ (Xilol, Xilol 1:1 etanol, etanol 90%, etanol 70%, etanol 50%, PBS pH 7.4, para histología, agua destilada, buffer citrato pH 6.8, metanol)
- Laminas portaobjetos y cubreobjetos
- Poly-L-lysine (Sigma).
- Beaker de 1 L, 0.5 L, 0.25 L, 0.1 L.
- Frascos Coplin para inmunohistoquímica
- Histomount (Invitrogen)
- Peróxido de hidrogeno 30%
- Solución bloqueadora de suero (Invitrogen)
- Puntas descartables de 1000, 100, 10 uL

3.3.2. Equipos

- Incubador de CO2 (THERMO FISHER SCIENTIFIC)
- Peachímetro (MIRRAY)
- Hemocitometer
- Microondas (Oster)
- Citómetro de mano (Scepter, Millipore)
- Cabina de flujo laminar (TELSTAR)
- Centrifuga (BOECO)
- Separador magnético de células (MAC, Miltenyi)
- Tanque de nitrógeno líquido
- Congelador de -86 (BIOBASE)
- Baño maría (MEMMERT)
- Microscopio invertido, Eclipse Ti. NIKON
- Autoclave (GEMMY-TAIWAN)
- Bomba al vacío (LAFIL100)
- Purificador de agua ultrapura (HEAL FORCE)
- Microscopio compuesto Eclipse (NIKON-E200)
- Pipetas automáticas (EPPENDORF) de 1000, 100, 10 uL

3.4 tipo de investigación

Estudio de investigación básica descriptivo transversal en oncología experimental.
3.5. Métodos
3.5.1. Líneas celulares
3.5.1.1. Línea MDA-MB 231

Estas células se cultivaron en placas de cultivo celular de 100mm (Corning), usando como medio de cultivo base DMEM-F12 (Sigma), y adicionando glucosa 4.5%, L-glutamina 4mM, suero fetal bovino (SFB) 1% de antibiótico (penicilina/estreptomicina/anfotericina B), aminoácidos esenciales (MEM 50x, Sigma) diluidos en agua ultrapura. La expansión poblacional se realizó cultivando en incubadora con 5% de anhídrido carbónico (CO2) hasta alcanzar una confluencia de 70% para realizar los experimentos de separación inmunomagnética y para inocular a los ratones.

3.5.1.2 Línea MDA-MB 436

Se cultivaron en placas de cultivo de 100mm (Corning) y como medio de cultivo base se utilizó DMEM-F12 (Sigma), suplementado con glucosa 4.5%, L-glutamina 4 Mm, 1% de antibióticos correspondiente a penicilina/estreptomicina/anfotericina B (Merck-Millipore), 1% aminoácidos esenciales (MEM 50x, Sigma), SFB 10%, insulina 0,01mg/ml, 16 mcg/ml de glutatión, agua ultrapura. Las células fueron expandidas en una incubadora con 5% de CO2 a 37 °C, hasta que alcanzaron una confluencia de 70% para realizar los experimentos de separación inmunomagnética e inoculación de ratones.

3.5.1.3 Línea MCF-7

Estas células se cultivaron en placas de cultivo celular de 100mm (Corning), usando como medio de cultivo base DMEM-F12 (Sigma), y adicionando glucosa 4.5%, L-glutamina 4mM, suero fetal bovino (SFB) 1% de antibiótico (penicilina/estreptomicina/anfotericina B), insulina 0,01mg/ml, aminoácidos esenciales (MEM 50x, Sigma) diluidos en agua ultrapura. La expansión poblacional se realizó cultivando en incubadora con 5% de anhídrido carbónico...
(CO2) hasta alcanzar una confluencia de 70 % para realizar los experimentos de inoculación a los ratones.

3.5.2 Inmunoselección magnética

La separación de células con el fenotipo CD44^{alta}/CD24^{baja}, se realizó mediante la técnica de separación inmunomagnética que emplea perlas magnéticas marcadas con monoclonales específicos para este fenotipo (Miltenyi), para lo cual utiliza el separador magnético MACS (Miltenyi) y las columnas MS (Miltenyi).

Con este propósito se expandieron ambas líneas celulares (MDA-MB 231 y MDA-MB 436) en varias placas de 100mm (EPPENDORF) hasta tener una confluencia 80- 90%, luego se levantaron las células con tripsina al 0.025%, para luego centrifugarlas a 300 g, luego contarlas en un hemocitómetro de Neubauer, hasta conseguir una cantidad de 10^7 células que exige el protocolo del proveedor del kit de separación de células.

3.5.2.1 Inmunoselección de células CD44 positivas (CD44+ o CD44^{altas})

El fundamento de esta técnica de selección positiva se basa en que células en cantidad mínima de 10^7 fueron incubadas a 2-8ºC con anticuerpo anti CD44 unidas a microperlas, y son pasadas como suspensión en una columna colocada en un campo magnético del separador MACS (Miltenyi). Las células que se unen al monoclonal con microperlas retenidas en la columna, que luego de separar la columna del MACS son eluídas y constituyen la fracción celular seleccionada positivamente.
3.5.2.1.1 Procedimiento
1. Determinar el número de células totales.
2. Centrifugar la suspensión celular a 300 × g durante 10 minutos. Aspirar todo sobrenadante.
3. Resuspender el sedimento celular en 80 μl de tampón por 10⁷ de células totales.
4. Agregar 20 μl de MicroBeads CD44 (Miltenyi) por 10⁷ células totales.
5. Mezclar bien e incubar durante 15 minutos en la oscuridad del refrigerador (2-8 °C).
6. Lavar las células mediante la adición de 1-2 ml de tampón por 10⁷ células y Centrífugar a 300 × g durante 10 minutos. Aspirar el sobrenadante completamente.
8. Resuspender hasta 10⁸ células en 500 μL de tampón.
9. Continuar con la separación magnética.
10. Colocar la columna en el campo magnético del separador MACS.
11. Preparar la columna enjuagando con 3 ml de tampón.
12. Aplicar la suspensión celular en la columna. Recoger el flujo en un frasco de centrífuga de 15 mL estéril.
13. Lavar la columna con 3 ml de solución tampón pH 7,2 por 3 veces, y depositar en un frasco de centrífuga de 15 mL estéril.
14. Retirar la columna del separador y colocarla en un tubo de 15 ml estéril.
15. Pipetear 5 ml de solución tampón en la columna. Inmediatamente lavar las células marcadas magnéticamente empujando firmemente el émbolo en la columna.
16. Cultivar las células separadas agregando medio completo en una incubadora con 5 % de CO2.

3.5.2.2 Inmunoselección de células CD24 positivas (CD24+ o CD24altas)

3.5.2.2.1. Protocolo

1. Determinar el número de células.
2. Centrifugar la suspensión celular a 300 × g durante 10 minutos. Aspirar el sobrenadante por completo.
3. Resuspendere el sedimento celular en 40 μl de tampón por 10⁷ células totales.
4. Agregar 10 μl de CD24-Biotina por 10⁷ de células totales.
5. Mezclar bien e incube durante 15 minutos en el refrigerador (2-8 °C).
6. Lavarse las células mediante la adición de 0,5-1 ml de solución tampón por 10⁷ células y centrífugar a 300 x g durante 10 minutos. Aspirar el sobrenadante completamente.
7. Resuspendere el sedimento celular en 80 μl de tampón por 10⁷ de células totales.
8. Agregar 20 μl de MicroBeads anti-Biotina (Miltenyi) por 10⁷ células totales.
9. Mezclar bien e incubar durante 15 minutos en el refrigerador (2-8 °C).
10. Lavarse las células mediante la adición de 1-2 ml de solución tampón por 10⁷ células y centrífugar a 300 xg durante 10 minutos. Aspirar el sobrenadante completamente.
12. Resuspendere hasta 10⁸ células en 500 μl de solución tampón.
13. Proceder a la separación magnética
14. Colocar la columna en el campo magnético del separador MACS.
15. Preparar la columna enjuagándola con 3 ml de solución tampón.
16. Aplicar la suspensión celular en la columna. Recoger el flujo de células en un tubo de centrífuga estéril.
17. Lavar la columna 3 veces con 3 mL de solución tampón.
18. Retirar la columna del separador y colocarla en un lugar adecuado como es un tubo de centrífuga de 15 ml estéril.
19. Pipetear la cantidad apropiada de solución tampón en la columna. Inmediatamente enjuague las células retenidas magnéticamente empujando firmemente el émbolo hacia la columna.

3.5.3. Ensayos de Proliferación (Doubling time [DT] en inglés)

Para determinar la capacidad proliferativa o doblaje poblacional(DP) las células fueron expandidas después de la selección inmunomagnética, para ello se tomó una placa con 70% de confluencia, se desprendieron las células con tripsina 0,25%, luego se centrífugó a 300 g y resuspendió en 1 ml de medio completo. Luego se contó en cámara de Neubauer 30,000 células/pocillo y se
distribuyó en una placa de 24 pocillos (Corning), como medio de cultivo se puso medio completo con 10% de SFB, incubando a 37°C con 5% de CO2. Se hizo 4 repeticiones(pocillos) por inmunofenotipo (MDA-MB 231; MDA-MB 436) y el recuento de células se realizó a las 24, 48 y 72 horas.

Protocolo para el recuento de células

1. Lavar con 500 µL de PBS pH 7,2 por dos veces.
2. Agregar tripsina 100 uL, esperar 2 minutos para inactivarla con medio completo (el medio completo que contiene SFB inactiva a la tripsina, la tripsina causa hidrólisis enzimática y degradan la matriz extracelular, las células son desprendidas del plástico).
3. Resuspender en Tubos Eppendorf de 1000 uL, agregando 1:1 de muestra y azul de tripán (20:20 ul) mesclar bien para el recuento celular.
4. Contar las células en cámara de Neubauer en los cuadrantes correspondientes, sacar el promedio, multiplicar por el factor de dilución, de cada repetición correspondiente y de cada línea células por independiente.
5. Llevar los datos crudos al Excel e interpretarlos con gráficas.

 \[
 \text{Doubling Time} = \frac{\text{duration} \times \log(2)}{\log(\text{Final Concentration}) - \log(\text{Initial Concentration})}
 \]

3.5.4 Xenotransplante
3.5.4.1. Animales

Ratones hembras de tercer parto fueron comprados del bioterio del Instituto Nacional de Salud de Lima y mantenidos por una semana en el bioterio de la Universidad Científica del Sur, para que se adapten al nuevo hábitat con temperatura 24°C más menos 2°C, humedad relativa 65% más menos 5 y luz controladas (fotoperiodo 12:12 horas), bajo una dieta ad hoc comprada de la Universidad Nacional Agraria de la Molina, Lima.
3.5.4.2. Inmunosupresión

Los animales fueron sometidos a inmunosupresión mediante la inoculación subcutánea de Dexametasona, en dosis de 200mg/kg un día antes de inoculación, y durante 15 días 30 mg/Kg subcutáneo. Se realizó también extracción de sangre para comprobar si realmente están inmunosuprimidos (Leucopenia), la técnica consiste con una lanceta punzar en la vena facial haciendo la sujeción correcta del animal, la sangre se recolecta en un vacutainer con EDTA, para su posterior lectura en el Citómetro (Rayto).

3.5.4.3. Células

Líneas celulares mantenidas en el Laboratorio de Cultivo Celular de la Universidad Científica del Sur, fueron utilizadas para preparar la dosis de inoculación. Inicialmente, se tripasinizan las células adherentes, se cuentan en el hemocitómetro para preparar alícuotas de células en las dosis necesarias para inyectarlas en el ratón.

3.5.4.4. Inoculación

Una vez preparadas las dosis celulares establecidas para el fenotipo CD44^{alta}/CD24^{baja} se resuspendió en 500 µL de PBS pH 7.2, posteriormente con una jeringa hipodérmica de tuberculina se inocularon en almohadilla mamaria de la región inguinal derecha, mientras que a otro grupo se inoculó directamente en la vena de la cola con aguja No. 30x1/2".

Los animales distribuidos en los grupos experimentales para cada línea celular, fueron inmovilizados con ayuda de los técnicos del bioterio, los animales que fueron inoculados vía intravenosa se les inmoviliza en una manga pequeña que fue hecha de un tubo de centrífuga de 50 ml (Figura 5).
Figura 5. Procedimientos para inoculación de células en ratones del experimento.

3.5.4.5. Necropsia

Los ratones se examinaban semanalmente para identificar aparición de tumores a la palpación. Por otro lado, se llevó registros de peso semanal de cada grupo, valores de hemograma antes de la inoculación y 15 días después de la inoculación. Cuatro semanas después de la inoculación de las células madre del cáncer mamario humano, se realizó la necropsia de todos los animales de la experimentación mediante sacrificio, empleando la asociación Xylacina/ketamina en dosis 500/50 mg/kg respectivamente, por animal e inspeccionando por tumores subcutáneos luego del desollado (Figura 6). Una vez realizada la apertura del cuerpo se investigó presencia de tumores en algún órgano interno registrando fotografías de los hallazgos.
Con el objetivo de demostrar que las células xenotransplantadas habían anidado en diferentes tejidos además de su presencia en los tumores formados, se aplicó la técnica inmunohistoquímica empleando un anticuerpo monoclonal anti antígeno nuclear humano (HNA) (Millipore), que es específico para identificar núcleos de células humanas y primates no humanos (Sánchez-Pernaute, 2005), que se reconoce por un patrón de tinción nuclear difusa de color marrón. Este anticuerpo monoclonal no reacciona con los núcleos del ratón ni de la rata. Las muestras estudiadas fueron cortes histológicos parafinados de órganos de los animales de experimentación.

3.5.4.7. Protocolo de la inmunohistoquímica (IHQ)
1. Las láminas para Inmunohistoquímica fueron previamente tratadas con poly-L-lysine solution 1% (w/v) in H2O en agua ultrapura, para luego secarlas en incubadora a 37 grados toda la noche.
2. Colocar las láminas con los cortes de los tejidos parafinados en los frascos de tinción coplin para inmunohistoquímica o en cubetas de vidrio.
3. Sumergir las láminas parafinadas en Xilol, por un tiempo de 5 min.
4. Volver a sumergir las láminas en Xilol, por un tiempo de 5 min.
5. Sumergir las láminas en Xilol/Etanol (1:1), por un tiempo de 5 min.
6. Luego sumergir las láminas en una cubeta de vidrio en Etanol al 100%, por un tiempo de 5 min.
7. Colocar las láminas en una cubeta de vidrio en Etanol 95%, por un tiempo de 3 min.
8. Sumergir las láminas en una cubeta de vidrio en Etanol 70%, por un tiempo de 3 min.
9. Poner las láminas en una cubeta de vidrio en Etanol 50%, por un tiempo de 3 min.
10. Lavar las láminas dos veces en Agua Destilada, 3 min.
11. Lavar las láminas en BUFFER PBS, PH: 7.4, tiempo de 10 min.
12. Lavar las láminas en BUFFER CITRATO, PH: 6.8
13. Pasar las láminas al Horno Microondas, potencia 6, tiempo 5 min.
14. Sumergir las láminas en una cubeta de vidrio en Peróxido de Hidrógeno 30%/Metanol (1:9), por un tiempo de 10 min.
15. Lavar las láminas dos veces en BUFFER PBS, PH: 7.4, tiempo 2 min.
16. Agregar la solución Bloqueadora, tiempo 10 min.
17. Secar con papel o escurrir.
18. Agregar el Anticuerpo Primario anti-human nuclei monoclonal antibody (1:100) directo en cada lámina, en una cámara húmeda, tiempo 60 min o toda la noche.
19. Lavar las láminas dos veces en BUFFER PBS, PH: 7.4, tiempo 2 min.
20. Agregar el Anticuerpo Secundario Biotinilado directo en cada lámina, tiempo de 10-20 min.
21. Lavar las láminas dos veces en BUFFER PBS, PH: 7.4, tiempo 2 min.
22. Agregar HRP-STRETAVIDIN directo en cada lámina, tiempo 10 min.
23. Luego en cada lámina agregar el Cromógeno (DAB), tiempo 40-60 segundos.
24. Lavar las láminas con Agua Destilada, tiempo 5 min.
25. Agregar en cada lámina Hematoxilina, tiempo 40-60 segundos.
26. Lavar las láminas en BUFFER PBS, PH: 7.4 o Hidróxido de Amonio, 10 segundos /según intensidad
27. Lavar las láminas en agua destilada.
28. Agregar histomount para montar con cubreobjetos.
TRATAMIENTOS:

3.6. Variables en estudio

Variables de inmunoselección magnética
Variable independiente: líneas celulares de cáncer de mama MDA-MB 231, MDA-MB 436.
Variable dependiente: inmunofenotipos y subpoblaciones de líneas celulares.

Variables de proliferación celular
Variable independiente: líneas celulares de cáncer de mama con inmunofenotipo CD 44 altas/CD 24 bajas.
Variable dependiente: aumento de la población de líneas celulares de cáncer de mama con inmunofenotipo CD 44 altas/CD 24 bajas en horas.

Variables de xenotransplante
Variable dependiente: Proliferación y metástasis en ratones con inmunosupresión química.

3.7. Diseño experimental
Se emplearon 42 ratones de 40 gramos en promedio adquiridos del bioterio del Instituto Nacional de Salud con sede en Lima, los cuales se distribuyeron en 4 grupos experimentales (Cuadro 1).
Se trabajó con tres líneas celulares (LC) de tumor mamario, dos de triple negativo (TNBC) de fenotipo mesenquimal basal MDA-MB 231 (LC1); MDA-MB 436 (LC2), previa selección celular inmunomagnética, y una no triple negativo MCF7 (LC3) de fenotipo epitelio luminal no seleccionada. Todas las líneas: LC1, LC2, LC3 proveniente de ATCC (USA), pero la LC1 y LC3 fueron cedidas gentilmente por el Dr. Timothy Thomson del Instituto de Biología Molecular del CSIC de Barcelona, España.

Se constituyeron 3 grupos en base al linaje celular: G-I(n:12): inoculados con el inmunofenotipo CD44^{alta}/CD24^{baja} de la línea celular 1 (LC1); G-II (n:12) inoculados con células del inmunofenotipo CD44^{alta}/CD24^{baja} de la línea celular 2 (LC2); G-III(n:12): inoculados con células MCF-7 (LC3); G-IV (n=6) inoculados con cloruro de sodio al 0,9% (control) como se aprecia en el Cuadro 1.

Cuadro 1. Grupos experimentales del inmunofenotipo células madre del cáncer según la línea celular.

<table>
<thead>
<tr>
<th>Grupos experimentales</th>
<th>Número de animales (n)</th>
<th>Líneas celulares con inmunofenotipo CD44+/CD24-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 SC; IV</td>
<td>MDA-MB 231 (LC1)</td>
</tr>
<tr>
<td>2</td>
<td>12 SC; IV</td>
<td>MDA-MB 436 (LC2)</td>
</tr>
<tr>
<td>3</td>
<td>12 SC; IV</td>
<td>MCF7 (LC3)</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Cloruro de sodio al 0,9% (control)</td>
</tr>
</tbody>
</table>

IV. Resultados

4.1. Inmunoselección magnética

Siguiendo el protocolo de Inmunoselección magnética para los marcadores de superficie CD44 y CD24 se obtuvo cuatro inmunofenotipos: CD44^{alta}/CD24^{baja}, CD44^{alta}/CD24^{alta}, CD44^{baja}/CD24^{alta}, CD44^{baja}/CD24^{baja}, de los cuales el primer inmunofenotipo es considerado células madre del cáncer de mama triple
negativo. Con la finalidad de trabajar con una deseable uniformidad de muestra en cuanto al número de pasajes, la selección se realizó el mismo día y para la sub-selección del linaje CD44+ se trabajó con una población de 5.55x10^6 células ligeramente menor al número que recomienda el fabricante del kit de selección. Come se aprecia en el Cuadro 2 que corresponde a la línea MDA-MB-436 el porcentaje de las células madre del cáncer con inmunofenotipo CD44^alta/CD24^baja es de 9.06% del número total de células del linaje MDA-MB-436 con que se inició la Inmunoselección; mientras que en el Cuadro 3 se muestra que en la línea MDA-MB-231 este linaje alcanza el 18.75%. En las Figuras 7 y 8 se muestran diferencias morfológicas resaltando que los inmunofenotipos CD44^alta/CD24^baja y CD44^baja/CD24^alta están compuestos por poblaciones de células que tienen menor tendencia a adherirse entre ellas.

Cuadro 2. Inmunofenotipos obtenidos por selección magnética a partir de la línea MDA-MB-436 (ATCC)

<table>
<thead>
<tr>
<th>Inmunofenotipo</th>
<th>Número de células (n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB 436</td>
<td>14.125 x 10^6</td>
<td>100</td>
</tr>
<tr>
<td>CD44^alta*</td>
<td>5.5 x10^6</td>
<td>38.9</td>
</tr>
<tr>
<td>CD24^baja**</td>
<td>8.6 x10^6</td>
<td>60.8</td>
</tr>
<tr>
<td>CD44^alta/CD24^baja*</td>
<td>1.2 x10^6</td>
<td>9.06</td>
</tr>
<tr>
<td>CD44^alta/CD24^alta*</td>
<td>4.2 x 10^6</td>
<td>29.70</td>
</tr>
<tr>
<td>CD44^baja/CD24^alta**</td>
<td>4.1x 10^6</td>
<td>20.02</td>
</tr>
<tr>
<td>CD44^baja/CD24^baja**</td>
<td>2.5 x 10^6</td>
<td>17.69</td>
</tr>
</tbody>
</table>

Se seleccionaron a partir de CD44^alta.

Se seleccionaron a partir de CD24^baja.

Figura 7. Morfología al microscopio invertido de los diferentes inmunofenotipos obtenidos por inmunoselección magnética de la línea MDA-MB-436.
Cuadro 3. Inmunofenotipos obtenidos por selección magnética a partir de la línea MDA-MB-231 (ATCC)

<table>
<thead>
<tr>
<th>Inmunofenotipo</th>
<th>Número de células (n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB-231</td>
<td>8x10^6</td>
<td>100</td>
</tr>
<tr>
<td>CD24 alta</td>
<td>2.325x10^6</td>
<td>29.06</td>
</tr>
<tr>
<td>CD24 baja</td>
<td>5.675x10^6</td>
<td>70.94</td>
</tr>
<tr>
<td>CD44 baja/CD24 baja</td>
<td>4.1x10^6</td>
<td>51.25</td>
</tr>
<tr>
<td>CD44 alta /CD24 baja</td>
<td>1.5x10^6</td>
<td>18.75</td>
</tr>
<tr>
<td>CD44 alta/CD24 alta</td>
<td>2.5x10^6</td>
<td>31.25</td>
</tr>
<tr>
<td>CD44 baja /CD24 alta</td>
<td>5.1x10^6</td>
<td>63.75</td>
</tr>
</tbody>
</table>

Figura 8. Microfotografías al microscopio invertido de los diferentes inmunofenotipos obtenidos Inmunoselección magnética de la línea MDA-MB-231.

4.2. Ensayos de proliferación celular

Se determinó el tiempo de doblaje de la población celular (DP) (Doubling time en inglés) del inmunofenotipo CD44alta/CD24baja de las dos líneas de células estudiadas: MDA-MB-231, MDA-MB-436, encontrándose que la primera línea tenía un DT de 41.56 horas mientras que la segunda línea celular tuvo un DT de 44.79 horas como se muestran en los cuadros 4 y 5, relevándose una diferencia, la cual muestra que la línea MDA-MB-231 tiene una proliferación celular más rápida hasta las 72 horas de cultivo (Figura 9).

<table>
<thead>
<tr>
<th>Horas (H)</th>
<th>No. de células</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 H</td>
<td>30000</td>
</tr>
<tr>
<td>24 H</td>
<td>56250</td>
</tr>
<tr>
<td>48 H</td>
<td>81312.5</td>
</tr>
<tr>
<td>72 H</td>
<td>99687.5</td>
</tr>
<tr>
<td>Doubling Time</td>
<td>41.56 H</td>
</tr>
</tbody>
</table>

Cuadro 5. Doblaje de la población del inmunofenotipo CD44alta/CD24 baja de la línea celular MDA-MB-436

<table>
<thead>
<tr>
<th>Horas (H)</th>
<th>No. de células</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 H</td>
<td>30000</td>
</tr>
<tr>
<td>24 H</td>
<td>51875</td>
</tr>
<tr>
<td>48 H</td>
<td>78437.5</td>
</tr>
<tr>
<td>72 H</td>
<td>91406.25</td>
</tr>
<tr>
<td>Doubling time</td>
<td>44.79 H</td>
</tr>
</tbody>
</table>

Figura 9. Diferencia de la proliferación celular de dos líneas celulares en función al tiempo de cultivo.

4.3. Xenotransplante
La formación de tumores en ratones hembras multiparas inmunosuprimidas, siguiendo el protocolo de xenotrasplante aplicado en este trabajo se produjo en el 16% de animales xenotransplantados por vía subcutánea (2×10^6) o intravenosa (2×10^5), al mostrar desarrollo de tumores luego de 30 días de la inoculación de las células de ambos linajes estudiados (Cuadro 6).

Cuadro 6. número de animales que presentaron tumores según líneas originarias del inmunofenotipo CD44alta/CD24baja y según vía de administración

<table>
<thead>
<tr>
<th>Líneas celulares</th>
<th>2×10^5 IV</th>
<th>2×10^6 SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB 231 CD44<sup>alta</sup>/CD24<sup>baja</sup></td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>MDA-MB 436 CD44<sup>alta</sup>/CD24<sup>baja</sup></td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>MFC7</td>
<td>0/6</td>
<td>0/6</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

En cambio, células de tumor mamario humano de la línea celular MCF-7 no produjeron tumores en los animales inoculados luego de 30 días, mientras que la línea MDA-B-231 sí produjo múltiples tumores, como se observa en la Figura 10.
Figura 10. Ratones inoculados con células del inmunofenotipo CD44alta/CD24baja de la línea MBA-MDB-231, mostrando desarrollo de tumores (Flechas) (A), comparado con el ratón inoculado con células de la línea MCF-7 (B).

Esta misma línea celular (MDA-MB-231) indujo también la formación de dos tumores mamarios de 0,8 cm (Figura 10-A [flechas]), así mismo se observa infiltración de células tumorales en el tejido mamario y adiposo (Figura 11), además de tumores submandibulares (Figura 12).

Figura 11. Corte histológico del tumor mamario (A). 10X; e infiltrado de células neoplásicas en tejido adiposo subcutáneo de mama derecha (B). 10X. Tinción H/E.
Figura 12. Formación de tumor submandibular, se describe tumor en ratones de 4 semanas post- inoculación SC. Células MDA-MB 231 CD44 alta/CD24 baja en ratones multiparos, tinción H &E derecha 10X.

Por otro lado, células de inmunofenotipo CD44alta/CD24baja de la línea MDA-MB-436 inoculadas por vía intravenosa (2x105) a ratones inmunosuprimidos con dexametasona, luego de 30 días produjeron varios tumores pulmonares descritos histológicamente como carcinoma pulmonar (Figura 13).
Figura 13. Tumores (Flechas) pulmonares en ratones inoculados con células CD44alta/CD24baja de la línea MDA-MB-436.

4.4. Inmunodetección de células xenotransplantadas

Células de origen humano fueron identificadas mediante inmunohistoquímica empleando anticuerpo monoclonal anti-núcleo de células humanas y primates no humanos, observándose un patrón de tinción nuclear de color marrón intenso en el pulmón y en tumores de ratones hembras inoculadas con células del inmunofenotipo CD44alta/CD24baja.

Figura 15. Inmunodetección de células humanas en pulmón de ratón inoculado con células CD44alta/CD24baja.
La selección inmunomagnética de células empleando perlas comparten la especificidad y sensibilidad con otras técnicas de separación basada en marcadores, proporcionando el potencial para una selección altamente precisa de objetivos y resultados reproducibles (Shields et al., 2015; Guo et al., 2017), por lo que nuestros resultados en la separación de células madre del cáncer son confiables y nos permite afirmar que en este trabajo se logró obtener un inmunofenotipo (CD44 alta/CD24 baja) atribuido a células madre del cáncer mamario triple negativo, el cual según otros estudios, es un subtipo molecular del cáncer de mama que puede ser un criterio adicional para características biológicas de cáncer mamario avanzado, y en pacientes con el subtipo molecular basal puede servir para una evaluación predictiva de potencial tumor de curso clínico agresivo (Chekhun et al., 2015).

En este trabajo, además, hemos identificado otras sub poblaciones en las dos líneas estudiadas, las que no tienen el perfil fenotípico de células madre del cáncer hasta hoy aceptadas, pero que sin embargo, pueden jugar un rol importante en la patogenia de este tipo de cáncer, sobre todo en la metástasis del mismo, lo cual estaría siendo corroborado con este trabajo, pero solo hemos logrado el desarrollo de tumores en el 16% de animales con inmunosupresión química inoculados con células de este fenotipo, lo que coincide con lo que plantean otros estudios que concluyen en que el fenotipo CD44 alta/CD24 baja que está asociado con la invasión, no es suficiente para el establecimiento de metástasis pulmonar (Sheridan et al., 2006).

Así mismo, encontramos otros tres inmunofenotipos: CD44 altas/CD24 altas, CD44 bajas/CD24 altas y CD44 bajas/CD24 bajas, que in vitro evidencian diferencias morfológicas y tamaño poblacional a la separación inmunomagnética, las que pueden estar relacionadas con las diferencias patogénicas de estos inmunofenotipos descritas en otros estudios. Así, el fenotipo CD24 está relacionado con la susceptibilidad y resistencia a quimioterápicos in vivo, mientras que en pacientes con tumores mamarios triple negativo tiene implicancia en resistencia a docetaxel y doxorubicina. En este mismo trabajo describen que las células con el fenotipo CD44+/CD24+ son más
resistentes al docetaxel en cambio el fenotipo CD44alta/CD24baja es a la doxorubicina (Checkun et al., 2015).

Por otro lado, una característica biológica in vitro dentro de la heterogeneidad de las células del cáncer, es su diversa velocidad proliferativa; en este estudio, las dos líneas estudiadas, MDA-MB-231 (41.56) y MDA-MB-436(44.79) tienen una variación moderada en esta cualidad proliferativa, que no se refleja en su capacidad de generar nuevos tumores. Estos resultados diferencian notablemente de otros trabajos, quienes al estudiar líneas de células de tumor mamario encuentran que sus tiempos de doblaje poblacional son mucho menores que los que nosotros encontramos, y atribuyen las variaciones que ellos encuentran a las variaciones según el tiempo de cultivo, número de pasajes (Nardone et al., 2011), y, a la densidad celular (Youn et al., 2006).

Otro objetivo de este trabajo, fue demostrar la capacidad de organizar nuevos tumores en ratones con inmunosupresión por inducción química, por lo que consideramos que estudios de xenotrasplante en ratones con sistema inmune competente permitirá conocer eventos en la carcinogénesis del tumor mamario triple negativo. Además que por ser células tumorales con características de células madre, deben tener efectos inmunosupresores y de inmunotolerancia que disminuirían el riesgo de rechazo al trasplante (Ghebeh H y Al-Alwan, 2013), por lo que esperamos un mayor éxito porcentual del xenotrasplante de células con fenotipo CD44alta/CD24baja, sin embargo en este trabajo, solo logramos 16% de xenotrasplante en ambas líneas de células, resultados que podrían atribuirse, a inmunosupresión incompleta, a falta de dosis adecuadas, al tiempo, a la baja capacidad de doblaje poblacional o al pasaje celular de las líneas estudiadas. Además debemos tener en cuenta que según el proveedor de la línea MDA-MB-436, esta no es tumorigénica, por lo que lograr inducir tumores en el 16% de los animales inoculados, es de importancia para futuros trabajos que permitan precisar perfiles del mantenimiento del linaje de células madre del cáncer.

Sin embargo, en ratones inmunocompetentes tratados con dexametasona, e infusión endovenosa de células del fenotipo CD44alta/CD24baja, se detectó células infundidas hasta 30 días después de la inoculación en cantidad abundante en el tumor, y en pequeña cantidad en pulmón y cerebro; lo cual
puede interpretarse, primero que células tumorales xenotrasplantadas en ratones logran sobrevivir por este tiempo en ambos órganos, en tanto que en el tumor se mantiene el antígeno nuclear humano en altas poblaciones de células, segundo que su detección en órganos sanos 30 días pos inoculación es insuficiente para originar un tumor, mientras que su presencia en el tejido tumoral en poblaciones celulares notables, podría indicar su participación en la génesis del tumor.

Estas observaciones pueden ratificar el que, para reproducir tumores en ratones, las células trasplantadas deben tener las siguientes propiedades: supervivencia en la circulación, adherencia en el órgano objetivo, extravasación e inicio del crecimiento tumoral, como se logra en ratones desnudos inmunocomprometidos (Hoffman, 1999). En nuestro trabajo hemos logrado reproducir tumores con las líneas estudiadas, pero en bajo porcentaje, cumpliendo las dos primeras propiedades, más no la tercera propiedad al obtener bajo porcentaje de formación de tumores.
VI. Conclusiones

1. Mediante el protocolo de Inmunoselección magnética utilizado en este trabajo se seleccionó cuatro inmunofenotipos: CD44_{alta}/CD24_{baja}, CD44_{alta}/CD24_{alta}, CD44_{baja}/CD24_{baja}, CD44_{baja}/CD24_{alta} de las líneas MDA-MB-231 y MDA-MB-436.

2. El inmunofenotipo CD44_{alta}/CD24_{baja} que corresponde a las células madre del cáncer mamario triple negativo representó el 18.75 % y el 9.06% de las líneas MDA-MB-231 y MDA-MB-436 respectivamente.

3. El tiempo de doblaje del inmunofenotipo de células madre del cáncer es de 41.56 horas para el linaje MDA-MB-231 y de 44.79 horas para el linaje MDA-MB-436.

4. El xenotrasplante del inmunofenotipo CD44_{alta}/CD24_{baja} de ambos linajes y por inoculación sub cutánea e intravenosa, en ratones con protocolo de inmunosupresión química utilizado en este trabajo, produjo formación de tumores en el 16% de los animales por línea celular.

5. Las células del inmunofenotipo CD44_{alta}/CD24_{baja} inoculadas en ratones inmunosuprimidos con dexametasona por vía sub cutánea y intravenosa son detectadas por inmunohistoquímica en los tumores y en pulmones, riñón y cerebro.
VII. Recomendaciones

1. Realizar ensayos en xenotrasplante de células del mismo linaje de este trabajo en ratones inmunocompetentes por mayor tiempo pos inoculación.

2. Hacer estudios comparativos de xenotrasplante de todos los inmunfenotipos aislados en este trabajo.

3. Estudiar la correlación entre tiempo de doblaje de diversos pasajes de los linajes de las células madre del cáncer y la tumorigenicidad.

4. Realizar ensayos de xenotrasplante en ratones knockout con todos los inmunofenotipos obtenidos.

receptor in, 95(April), 5076–5081.

Ghebeh H and Al-Alwan M. Do Cancer Stem Cells have an Immunomodulatory Role Different from the Bulk of Tumor Cells?. *J Carcinogene Mutagene* 2013, S14.

renewal properties comprise the human hematopoietic stem cell compartment. *NATURE IMMUNOLOGY VOLUME, 7*(11), 1225–1233. https://doi.org/10.1038/ni1393

Pérez, V. V. y A. (1999). FISIOLOGIA DE LA GLANDULA MAMARIA Y LACTANCIA.

IX. ANEXOS

Anexo 1. Líneas celulares que se emplearon en el proyecto

Cuadro 7. Características moleculares de líneas celulares de cáncer de mama.

<table>
<thead>
<tr>
<th></th>
<th>MCF-7 (Luminal A)</th>
<th>MDA-MB 231</th>
<th>MDA-MB 436</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PR</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HER2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P53 mutado</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>RB1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Figura 16. Líneas celulares de cáncer de mama triple negativo MDA-MB 231 (izquierda), MDA-MB 436 (derecha).
Anexo 2. Selección magnética

Método de separación celular que utiliza perlas magnéticas acopladas a anticuerpos específicos contra células que se desean separar (separación positiva) o bien contra otras células que se deseen eliminar (selección negativa).

Figura 17. Esquema de selección magnética.
Figura 18. Solución buffer fosfato (pH 7.4)

Figura 19. Anticuerpo CD-44 (Miltenyi)

Figura 20. Anticuerpo CD-24 (Miltenyi)

Figura 22. Columnas MS para separación celular.

Figura 23. Placa Petri con línea celular MDA - MB - 231

Figura 24. Placa Petri con línea celular MDA - MB – 436
Anexo 4. Valores de hemograma

Cuadro 8. Se muestra los valores obtenidos antes de la inmunosupresión, el primer día 200mg/kg inmunosupresión y 15 días después de 30mg/kg con dexametasona.

<table>
<thead>
<tr>
<th></th>
<th>día 0</th>
<th>día 1</th>
<th>día 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>hematocrito%</td>
<td>46.1</td>
<td>47.1</td>
<td>42.3</td>
</tr>
<tr>
<td>Eritrocitos 10^6/ul</td>
<td>9.87</td>
<td>10.06</td>
<td>9.05</td>
</tr>
<tr>
<td>Leucocitos x 10^3/ul</td>
<td>8.6</td>
<td>4.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Neutropilos %</td>
<td>11</td>
<td>9.5</td>
<td>30.9</td>
</tr>
<tr>
<td>Linfocitos %</td>
<td>59.7</td>
<td>30.8</td>
<td>22.3</td>
</tr>
<tr>
<td>Linfocitos x10^3</td>
<td>6.8</td>
<td>1.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Figura 25. Cuadro comparativo de los linfocitos de los animales inmunosuprimidos con dexametasona.
Anexo 5. Control de peso de grupos de experimentación

Cuadro 9. Control de peso de animales inoculados con líneas celulares de cáncer de mama.

<table>
<thead>
<tr>
<th></th>
<th>DÍA 0</th>
<th>DÍA 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB 231</td>
<td>39.2 g</td>
<td>35.3 g</td>
</tr>
<tr>
<td>MDA-MB 436</td>
<td>41.3 g</td>
<td>37.7 g</td>
</tr>
<tr>
<td>MCF7</td>
<td>41.4 g</td>
<td>39.8 g</td>
</tr>
</tbody>
</table>

![Figura 26. Figura comparativa de peso de animales (gr) que fueron inoculados](image-url)
Lima 1, de noviembre del 2017.

SEÑOR

Dr. JUAN SANDOVAL

DECANO DE LA FACULTAD DE MEDICINA VETERINARIA

De mi consideración:

Me dirijo a usted para manifestarle que el Bachiller Luis Jhordy Alfaro Quillas, ha realizado su trabajo de tesis: “Identificación del inmunofenotipo de células en tumores inducidos por células madre del cáncer mamario en ratones”, bajo mi dirección y en el marco del Convenio 378-PNICP-PIBA-2014 del cual soy Coordinador Principal. Luego de culminar el trabajo experimental cumpliendo los objetivos planteados originalmente y constatando la validez de los resultados, le comunico que el mencionado Bachiller está capacitado para defender su trabajo de tesis.

Es todo cuanto debo informar a usted respecto al trabajo de tesis en mención.

Javier Enciso Gutiérrez

Asesor de Tesis