Optimización de la tasa de utilización de energías renovables con un control predictivo basado en modelos
Fecha
2025
Autores
Asesor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional San Luis Gonzaga.
Resumen
El objetivo principal de esta investigación es mejorar la tasa de utilización de energías renovables
mediante la implementación de un control predictivo basado en modelos (MPC). El estudio se
centra en una red de microrredes, donde cada una posee fuentes de energía renovable y sistemas
de almacenamiento. Se propone un algoritmo de optimización que permite maximizar el uso de
energía renovable, reduciendo la dependencia de generadores no renovables.
La estrategia metodológica utiliza simulaciones en una red de tres microrredes, aplicando un
modelo de control distribuido que ajusta la generación y almacenamiento de energía en tiempo
real. El enfoque permite gestionar la incertidumbre de las fuentes renovables y optimizar el uso
de los recursos energéticos.
Los resultados muestran que el MPC mejora significativamente la utilización de energías
renovables, aumentando la eficiencia de los sistemas de almacenamiento y prolongando su vida
útil. Además, el modelo propuesto asegura que el sistema pueda operar de manera óptima incluso
durante variaciones en la demanda energética.
En conclusión, el control predictivo basado en modelos ofrece una solución eficiente para
maximizar el uso de energías renovables, contribuyendo a la sostenibilidad energética y
reduciendo el impacto ambiental.
The main objective of this research is to improve the utilization rate of renewable energies through the implementation of model predictive control (MPC). The study focuses on a network of microgrids, each equipped with renewable energy sources and storage systems. An optimization algorithm is proposed to maximize the use of renewable energy, reducing reliance on non renewable generators. The methodological strategy uses simulations in a network of three microgrids, applying a distributed control model that adjusts energy generation and storage in real-time. The approach allows for managing uncertainty in renewable sources and optimizing the use of energy resources. The results show that MPC significantly improves the use of renewable energies, increasing the efficiency of storage systems and prolonging their lifespan. Additionally, the proposed model ensures the system operates optimally even during energy demand variations. In conclusion, model predictive control offers an efficient solution to maximize the use of renewable energies, contributing to energy sustainability and reducing environmental impact.
The main objective of this research is to improve the utilization rate of renewable energies through the implementation of model predictive control (MPC). The study focuses on a network of microgrids, each equipped with renewable energy sources and storage systems. An optimization algorithm is proposed to maximize the use of renewable energy, reducing reliance on non renewable generators. The methodological strategy uses simulations in a network of three microgrids, applying a distributed control model that adjusts energy generation and storage in real-time. The approach allows for managing uncertainty in renewable sources and optimizing the use of energy resources. The results show that MPC significantly improves the use of renewable energies, increasing the efficiency of storage systems and prolonging their lifespan. Additionally, the proposed model ensures the system operates optimally even during energy demand variations. In conclusion, model predictive control offers an efficient solution to maximize the use of renewable energies, contributing to energy sustainability and reducing environmental impact.
Descripción
Palabras clave
Energías renovables, Control predictivo, Microrredes, Sostenibilidad, Eficiencia energética, Reducción de impacto ambiental, Renewable energies
