Control predictivo basado en modelos y neurodifuso, aplicado a la optimización de energía en microrredes eléctricas con fuentes renovables

Resumen

El trabajo de investigación desarrollado, tiene como interés fundamental el modelado de un control predictivo basado en modelos (CPBM) y asociado a un control neurodifuso (CND), con el objeto de optimizar la gestión energética en microrredes eléctricas con fuentes renovables. Primero, como resultado de las encuestas realizadas, se procedió a dimensionar un prototipo de microrred eléctrica de baja potencia, integrado por fuentes de energía solar, eólica y baterías. Luego, usando datos simulados, se estimó el modelo dinámico del sistema utilizando la estructura paramétrica ARMAX de tercer orden; pero, el reducido de segundo orden da resultados similares. En tercer lugar, se modeló el control predictivo basado en modelos (CPBM) aplicado a la microrred, empleando los algoritmos de solución distribuidos alternativos siguientes: cooperativo, no cooperativo y la formulación de Lagrange; demostrándose que el más limitado en cuanto a intercambio de energía y la que más emplea la energía de la red pública es la no cooperativa; así también, empleando 3 estrategias, es la tercera que usa CPBM económico y CPBM con previsión perfecta, que genera ahorros del 17,6% y 10.4%, respectivamente. En cuarto lugar, se simuló mediante 3 variante de control neurodifuso, demostrándose que la variante 3 en términos de energía es casi igual que la variante 1, pero en régimen de batería es mejor. Se concluye que, el control CPBM, logra aprovechar óptimamente los recursos energéticos disponibles y; en cuanto al control Neurodifuso, la variante 3 arroja mejores resultados, aumentando la sostenibilidad del sistema. Para todos los cálculos y simulaciones, se empleó los recursos de Matlab/Simulink.

Descripción

Palabras clave

Microredes, Control CPBM, Control neurodifuso

Citación