Diseño del sistema acelerómetro triaxial subamortiguado MEMS de baja potencia en simultáneo al control de amortiguamiento electrostático en la Universidad Nacional San Luis Gonzaga
Fecha
2025
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional San Luis Gonzaga.
Resumen
En los últimos tiempos, la industria de la electrónica de consumo ha conocido un crecimiento
espectacular que no habría sido posible sin ampliar cada vez más la barrera de la integración. Los
sensores de inercia de Sistemas Microelectromecánicos (MEMS) ofrecen soluciones de alto
rendimiento, bajo consumo y bajo costo de matriz y, en la actualidad, están integrados en la
mayoría de las aplicaciones de consumo. Además, la fusión de sensores se ha convertido en una
nueva tendencia y los sensores combinados están ganando cada vez más popularidad desde que
la cointegración de un acelerómetro triaxial MEMS y un giroscopio triaxial MEMS proporciona
información de navegación completa. El dispositivo resultante es una unidad de medida inercial
capaz de detectar múltiples grados de libertad. Sin embargo, el rendimiento de los acelerómetros
y los giroscopios está condicionado por la presión de la cavidad MEMS: el acelerómetro suele ser
un sistema amortiguado que funciona bajo presión atmosférica, mientras que el giroscopio es un
sistema altamente resonante. Por lo tanto, para concebir un sensor combinado, se requiere una
presión de cavidad baja única. La integración de ambos transductores dentro de la misma cavidad
de baja presión requiere un método para controlar y reducir los fenómenos aumentando el factor
de amortiguamiento del acelerómetro MEMS. En consecuencia, el objetivo de la tesis es el diseño
de una interfaz frontal analógica capaz de detectar y controlar un acelerómetro triaxial MEMS
subamortiguado. Esta tesis propone una novedosa interfaz de acelerómetro de lazo cerrado, el
cual logra un bajo consumo de energía. El diseño consiste en encontrar un equilibrio entre la
frecuencia de muestreo, el tiempo de estabilización y la complejidad del circuito, ya que las placas
de excitación del sensor se multiplexan entre las fases de medición y amortiguamiento. En este
contexto, se ha concebido una secuencia de amortiguación patentada (amortiguación simultánea)
para mejorar la eficiencia de amortiguación sobre el mejoramiento del enfoque del estado del arte.
Para investigar la viabilidad de la nueva arquitectura de control de amortiguación electrostática,
se han desarrollado varios modelos matemáticos y se utiliza el método del tiempo de
sedimentación para evaluar la eficiencia de amortiguación. Además, se ha desarrollado un nuevo
xii
método que utiliza la teoría de procesamiento de señales multitasa y permite el estudio de la
estabilidad del sistema. Este mismo método se utiliza para concluir sobre la estabilidad del bucle
para una determinada frecuencia de muestreo y valor de ganancia del bucle. Se diseña una
implementación CMOS de toda la cadena de señales del acelerómetro. El funcionamiento ha sido
validado y el bloque puede integrarse aún más dentro de un ASIC. Finalmente, se diseña un
sistema de componentes discretos para validar experimentalmente el enfoque de amortiguamiento
simultáneo.
In recent times, the consumer electronics industry has seen spectacular growth that would not have been possible without ever widening the integration barrier. Microelectromechanical Systems (MEMS) inertial sensors offer high performance, low power, low array cost solutions and are now integrated into most consumer applications. In addition, sensor fusion has become a new trend and combined sensors are gaining more and more popularity since the cointegration of a MEMS triaxial accelerometer and a MEMS triaxial gyroscope provides comprehensive navigation information. The resulting device is an inertial measurement unit capable of detecting multiple degrees of freedom. However, the performance of accelerometers and gyroscopes is conditioned by the pressure of the MEMS cavity: the accelerometer is typically a damped system operating under atmospheric pressure, while the gyroscope is a highly resonant system. Therefore, to conceive a combination sensor, a single low cavity pressure is required. The integration of both transducers within the same low-pressure cavity requires a method to control and reduce the phenomena by increasing the damping factor of the MEMS accelerometer. Consequently, the objective of the thesis is the design of an analog front interface capable of detecting and controlling an underdamped MEMS triaxial accelerometer. This thesis proposes a novel closed loop accelerometer interface, which achieves low power consumption. The design involves finding a balance between sample rate, settling time, and circuit complexity, as the sensor drive boards are multiplexed between the measurement and damping phases. In this context, a simultaneous damping sequence has been devised to improve the damping efficiency over the improvement of the state of the art approach. To investigate the feasibility of the new electrostatic damping control architecture, several mathematical models have been developed and the settling time method is used to evaluate the damping efficiency. In addition, a new method has been developed that uses the theory of multirate signal processing and allows the study of the stability of the system. This same method is used to conclude about the stability of the loop for a given sample rate and loop gain value. A CMOS implementation of the entire accelerometer signal xiii chain is designed. The operation has been validated and the block can be further integrated within an ASIC. Finally, a discrete component system is designed to experimentally validate the simultaneous damping approach.
In recent times, the consumer electronics industry has seen spectacular growth that would not have been possible without ever widening the integration barrier. Microelectromechanical Systems (MEMS) inertial sensors offer high performance, low power, low array cost solutions and are now integrated into most consumer applications. In addition, sensor fusion has become a new trend and combined sensors are gaining more and more popularity since the cointegration of a MEMS triaxial accelerometer and a MEMS triaxial gyroscope provides comprehensive navigation information. The resulting device is an inertial measurement unit capable of detecting multiple degrees of freedom. However, the performance of accelerometers and gyroscopes is conditioned by the pressure of the MEMS cavity: the accelerometer is typically a damped system operating under atmospheric pressure, while the gyroscope is a highly resonant system. Therefore, to conceive a combination sensor, a single low cavity pressure is required. The integration of both transducers within the same low-pressure cavity requires a method to control and reduce the phenomena by increasing the damping factor of the MEMS accelerometer. Consequently, the objective of the thesis is the design of an analog front interface capable of detecting and controlling an underdamped MEMS triaxial accelerometer. This thesis proposes a novel closed loop accelerometer interface, which achieves low power consumption. The design involves finding a balance between sample rate, settling time, and circuit complexity, as the sensor drive boards are multiplexed between the measurement and damping phases. In this context, a simultaneous damping sequence has been devised to improve the damping efficiency over the improvement of the state of the art approach. To investigate the feasibility of the new electrostatic damping control architecture, several mathematical models have been developed and the settling time method is used to evaluate the damping efficiency. In addition, a new method has been developed that uses the theory of multirate signal processing and allows the study of the stability of the system. This same method is used to conclude about the stability of the loop for a given sample rate and loop gain value. A CMOS implementation of the entire accelerometer signal xiii chain is designed. The operation has been validated and the block can be further integrated within an ASIC. Finally, a discrete component system is designed to experimentally validate the simultaneous damping approach.
Descripción
Palabras clave
MEMS, Acelerometro, Electrostático, Accelerometer
