Modelo matemático para el problema de transporte y asignación de recursos
Fecha
2023
Asesor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional San Luis Gonzaga. Vicerrectorado de Investigación. Instituto de Investigación
Resumen
Los problemas en el mundo real precisan de soluciones rápidas y precisas para tomar una
decisión rápida. Estos problemas pueden ser formulados matemáticamente como un problema de
optimización lineal o no lineal, sujeto a diferentes restricciones. En este trabajo fue estudiado el
problema de optimización lineal. El principal algoritmo computacional más utilizado para resolver
este tipo de problemas es el método simplex. Este método precisa de algunas modificaciones
cuando las restricciones están en estado de igualdad, lo que muchas veces lo hace costoso
computacionalmente.
Por ejemplo, el problema de transporte es un problema clásico de programación lineal, que
consiste en determinar una forma eficiente de transportar un bien disponible en cantidades
limitadas de determinados locales para otros donde el bien es necesario, o designar una cantidad
fija de n- individuos a realizar n-tareas, esto es un individuo por tarea y viceversa. Este problema
de optimización lineal con restricciones de igualdad en el lenguaje matemático es un problema de
optimización.
Resolver un problema básico de optimización lineal consisten en: obtener una solución básica
o admisible, que satisface el criterio de optimalidad, hasta encontrar la mejor solución.
En este trabajo, fue propuesto utilizar métodos prácticos para encontrar soluciones básicas o
admisibles para tratar con el costo computacional, los métodos estudiados fueron: Método de la
esquina noroeste y Método de Vogel. Estas estrategias ayudaron a encontrar soluciones rápidas
para tomar una decisión. Otro caso particular del problema de transporte es el problema de
designación que es un problema también estudiado.
La estrategia propuesta fue aplicada a diferentes problemas existentes en la literatura. Estos
algoritmos fueron programados utilizando bibliotecas del código Python-TensorFlow de
Colaboratory da Google.
Problems in the real world require quick and accurate solutions to make a quick decision. These problems can be formulated mathematically as a linear or nonlinear optimization problem, subject to different constraints. In this work the linear optimization problem was studied. The main computational algorithm most used to solve this type of problems is the simplex method. This method requires some modifications when the constraints are in a state of equality, which often makes it computationally expensive. For example, the transportation problem is a classic linear programming problem, which consists of determining an efficient way to transport a good available in limited quantities from certain locations to others where the good is needed, or designating a fixed number of n-individuals. to perform n-tasks, that is, one individual per task and vice versa. This linear optimization problem with equality constraints in mathematical language is an optimization problem. Solving a basic linear optimization problem consists of: obtaining a basic or admissible solution, which satisfies the optimality criterion, until the best solution is found. In this work, it was proposed to use practical methods to find basic or admissible solutions to deal with the computational cost, the methods studied were: the northwest corner method and Vogel's method. These strategies helped to find quick solutions to make a decision. Another particular case of the transportation problem is the designation problem, which is a problem also studied. The proposed strategy was applied to different problems existing in the literature. These algorithms were programmed using Python-TensorFlow code libraries from Google Colaboratory.
Problems in the real world require quick and accurate solutions to make a quick decision. These problems can be formulated mathematically as a linear or nonlinear optimization problem, subject to different constraints. In this work the linear optimization problem was studied. The main computational algorithm most used to solve this type of problems is the simplex method. This method requires some modifications when the constraints are in a state of equality, which often makes it computationally expensive. For example, the transportation problem is a classic linear programming problem, which consists of determining an efficient way to transport a good available in limited quantities from certain locations to others where the good is needed, or designating a fixed number of n-individuals. to perform n-tasks, that is, one individual per task and vice versa. This linear optimization problem with equality constraints in mathematical language is an optimization problem. Solving a basic linear optimization problem consists of: obtaining a basic or admissible solution, which satisfies the optimality criterion, until the best solution is found. In this work, it was proposed to use practical methods to find basic or admissible solutions to deal with the computational cost, the methods studied were: the northwest corner method and Vogel's method. These strategies helped to find quick solutions to make a decision. Another particular case of the transportation problem is the designation problem, which is a problem also studied. The proposed strategy was applied to different problems existing in the literature. These algorithms were programmed using Python-TensorFlow code libraries from Google Colaboratory.
Descripción
Palabras clave
Problema de transporte, Logística de transporte, Optimización de rutas, Transportation efficiency