Polinomio característico de la representación matricial de operadores lineales en espacios de dimensión finita
Fecha
2024
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional San Luis Gonzaga
Resumen
El trabajo de investigación se inicia con algunos aspectos básicos del algebra lineal, curso que se
dicta en la Facultad de Ciencias donde he culminado mis estudios de pregrado. Los temas que sea
tomado para el trabajo se enumeran en el siguiente orden. Primero, inicio con la definición de
espacio vectorial y se demuestran algunas propiedades importantes. Luego se define una
transformación lineal de un espacio vectorial a otro, generalmente un espacio vectorial diferentes,
pero sobre el mismo campo. Cuando una transformación lineal se define sobre dos espacios
vectoriales iguales, hablamos de operadores lineales. Defino la representación matricial de una
transformación lineal por ende de un operador lineal, esta representación matricial la usaremos
en este trabajo de tesis. Para estas matrices que son las representaciones matriciales definimos el
valor y vector propio, luego entramos a los polinomios característicos, a la semejanza de matrices
y sus propiedades en particular que las matrices semejantes tienen el mismo polinomio
característico.
Finalmente se estudiará algunos métodos iterativos para el cálculo del polinomio característico
de una matriz. Los métodos estudiados son en este orden:
-Método de Danilevsky.
-Método de Krylov
-Método de Le verrier
Se dan algunos ejemplos de aplicación de estos métodos.
Se deja la tarea de otra investigación para estudiar o implementar un software para ejecutar
estos métodos en la computadora.
The research work begins with some basic aspects of linear algebra, a course that is taught at the Faculty of Sciences where I have completed my undergraduate studies. The topics that have been taken up for the work are listed in the following order. First, we start with the definition of a vector space and demonstrate some important properties. Then a linear transformation is defined from one vector space to another, generally a different vector spaces, but over the same field. When a linear transformation is defined on two equal vector spaces, we speak of linear operators. I define the matrix representation of a linear transformation therefore of a linear operator, we will use this matrix representation in this thesis work. For these matrices, which are the matrix representations, we define the value and eigenvector, then we enter the characteristic polynomials, the similarity of matrices and their properties, in particular that similar matrices have the same characteristic polynomial. Finally, some iterative methods for calculating the characteristic polynomial of a matrix will be studied. The methods studied are in this order: - Danilevsky method - Krylov method - Le verrier method Some examples of application of these methods are given. The task of another investigation is left to study or implement software to execute these methods on the computer.
The research work begins with some basic aspects of linear algebra, a course that is taught at the Faculty of Sciences where I have completed my undergraduate studies. The topics that have been taken up for the work are listed in the following order. First, we start with the definition of a vector space and demonstrate some important properties. Then a linear transformation is defined from one vector space to another, generally a different vector spaces, but over the same field. When a linear transformation is defined on two equal vector spaces, we speak of linear operators. I define the matrix representation of a linear transformation therefore of a linear operator, we will use this matrix representation in this thesis work. For these matrices, which are the matrix representations, we define the value and eigenvector, then we enter the characteristic polynomials, the similarity of matrices and their properties, in particular that similar matrices have the same characteristic polynomial. Finally, some iterative methods for calculating the characteristic polynomial of a matrix will be studied. The methods studied are in this order: - Danilevsky method - Krylov method - Le verrier method Some examples of application of these methods are given. The task of another investigation is left to study or implement software to execute these methods on the computer.
Descripción
Palabras clave
Operador lineal, Representación matricial, Polinomio, Valores propios, Linear operator