Perspectiva didáctica de la ecuación diferencial no lineal de Riccati
Fecha
2023
Asesor
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional San Luis Gonzaga. Vicerrectorado de Investigación. Instituto de Investigación
Resumen
En general, las ecuaciones diferenciales no lineales son no resolubles y no es común
encontrar una solución de forma cerrada; dentro de este grupo está la ecuación diferencial
de Riccati 𝑑𝑥(𝑡) 𝑑𝑡 = 𝐵(𝑡)𝑥2 + 𝐶(𝑡)𝑥 + 𝐷(𝑡), cuya integración tiene mucho que ver entre las
relaciones de 𝐵, 𝐶 y 𝐷. El objetivo principal es proponer una perspectiva didáctica bajo el
modelo Van Hiele, dosificar los niveles para el estudio de este problema, ya en el último
nivel, aplicar un proceso de solución con métodos algebraicos que permitan resolver la
ecuación de Riccati y generalizar casos especiales. Los resultados son propuestas viables
dirigidos a estudiantes de ciencias e ingenierías, al descubrir nuevos métodos de solución
con ayuda del álgebra y análisis.
In general, nonlinear differential equations are not solvable and it is not common to find a closed-form solution; Within this group is the Riccati differential equation 𝑑𝑥(𝑡) 𝑑𝑡 = 𝐵(𝑡)𝑥2 + 𝐶(𝑡)𝑥 + 𝐷(𝑡), whose integration has a lot to do between the relations of 𝐵, 𝐶 and 𝐷. The main objective is to propose a didactic perspective under the Van Hiele model, to dose the levels for the study of this problem, already at the last level, to apply a solution process with algebraic methods that allow solving the Riccati equation and generalizing special cases. The results are viable proposals aimed at science and engineering students, by discovering new solution methods with the help of algebra and analysis.
In general, nonlinear differential equations are not solvable and it is not common to find a closed-form solution; Within this group is the Riccati differential equation 𝑑𝑥(𝑡) 𝑑𝑡 = 𝐵(𝑡)𝑥2 + 𝐶(𝑡)𝑥 + 𝐷(𝑡), whose integration has a lot to do between the relations of 𝐵, 𝐶 and 𝐷. The main objective is to propose a didactic perspective under the Van Hiele model, to dose the levels for the study of this problem, already at the last level, to apply a solution process with algebraic methods that allow solving the Riccati equation and generalizing special cases. The results are viable proposals aimed at science and engineering students, by discovering new solution methods with the help of algebra and analysis.
Descripción
Palabras clave
Ecuación de Riccati, Ecuación diferencial no lineal, Solución algebraica, Modelo Van Hiele, Nonlinear differential equation, Algebraic solution